Skip to main content

Nanowear of Polymers

Part of the NanoScience and Technology book series (NANO)

Abstract

The use of viscoelastic materials, such as polymers, constantly increases in the field of nanotechnology. These materials are softer than metallic and inorganic ones, and, because of that, they are easier to deform and wear off. The wear mechanisms occurring for viscoelastic materials are rather complex, and, generally, present more complications for a direct investigation with respect to metals or ceramics materials. With the advent of Scanning Probe Microscopy (SPM), well characterized forces can be applied to a surface with a nanometer-scale spatial resolution. In particular Atomic Force Microscopy (AFM), working at high contact forces, can significantly modify many surfaces. Polymers are soft enough to be modified by hard AFM tips, such as those of silicon, silicon nitride or diamond. For these reasons, the AFM is today the main tool employed to investigate wear occurrence on polymer surfaces. The wear of a polymer surface caused by an AFM tip in a regime of single asperity contact is an articulate process that depends on conditions such as, namely, the applied forces, the tip shape, size and the relative velocity. Since the influence of all these parameters is in close connection with the sample properties, one can expect a dependence of the wearing process on the mechanical properties of the sample surfaces. These properties can vary significantly from the bulk properties, if cross linking is made or, on contrary, residual solvents are present in the specimens. This chapter is divided in three sections following a general introduction. Specifically, the first section deals with wear induced by means of AFM tips to study the mechanical properties of films at the nanoscale; the second one regards the exploitation of wear for the creation of nanolithographic patterns; the last one is finally dedicated to an applicative field such as the characterization ofwear of polymers for biomedical applications at the meso- and nanoscales.

Keywords

  • Atomic Force Microscopy
  • Wear Mechanism
  • Lithographic Process
  • Hertzian Model
  • Wear Regime

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-10560-4_24
  • Chapter length: 43 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-10560-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 24.1
Fig. 24.2
Fig. 24.3
Fig. 24.4
Fig. 24.5
Fig. 24.6
Fig. 24.7
Fig. 24.8
Fig. 24.9
Fig. 24.10
Fig. 24.11
Fig. 24.12
Fig. 24.13
Fig. 24.14
Fig. 24.15
Fig. 24.16
Fig. 24.17
Fig. 24.18
Fig. 24.19
Fig. 24.20
Fig. 24.21
Fig. 24.22
Fig. 24.23
Fig. 24.24
Fig. 24.25
Fig. 24.26
Fig. 24.27
Fig. 24.28
Fig. 24.29
Fig. 24.30
Fig. 24.31
Fig. 24.32
Fig. 24.33
Fig. 24.34
Fig. 24.35
Fig. 24.36
Fig. 24.37
Fig. 24.38

References

  1. B. Bhushan, Nanotribology and Nanomechanics II, (Springer, Berlin, 2011)

    Google Scholar 

  2. B. Bhushan, Handbook of Nanotechnology, \(3^{\rm rd}\) ed. (Springer, New York, 2010)

    Google Scholar 

  3. S.K. Sinha, N. Satyanarayana, S.C. Lim, Nano-Tribology and Materials in MEMS, (Springer, New York, 2013)

    Google Scholar 

  4. R.W. Carpick, M. Salmeron, Chem. Rev. 97, 1163–1194 (1997)

    Google Scholar 

  5. E. Gnecco, E. Meyers, Fundamentals in Friction and Wear on Nanoscale (Springer, Berlin, 2007)

    Google Scholar 

  6. B.J. Briscoe, S.K. Sinha, Proceedings of the institution of mechanical engineers Part J. J. Eng. Tribol. 216, 401–413 (2002)

    Google Scholar 

  7. K. Friedrich, P. Reinicke, Mech. Compos. Mater. Struct. 34, 503–514 (1998)

    Google Scholar 

  8. H. Shulha, A. Kovalev, N.K. Myshkin, V.V. Tsukruk, Eur. Polymer J. 40, 949–956 (2004)

    Google Scholar 

  9. N.K. Myshkin, M.I. Petrokovets, A.V. Kovalev, Tribol. Int. 38, 910–921 (2005)

    Google Scholar 

  10. D.L. Burris, B. Boesl, G.R. Bourne, W.G. Sawyer, Macromol. Mater. Eng. 292, 387–402 (2007)

    Google Scholar 

  11. M. Chandrasekaran, A.W. Batchelor, Wear 211, 35–43 (1997)

    Google Scholar 

  12. N.A. Wright, S.N. Kukureka, Wear 251, 1567–1578 (2001)

    Google Scholar 

  13. R. Prehn, F. Haupert, K. Friedrich, Wear 259, 693–696 (2005)

    Google Scholar 

  14. A. Dasari, Z.Z.Yu, Y.W. Mai, Wear and scratch damage in polymer nanocomposites, in Tribology of PolymericNanocomposites: Friction and Wear of Bulk Materials and Coatings 2nd edn. ed. byK. Friedrich, A.K. Schlarb (Butterworth Heinemann, Oxford, UK, 2013). pp. 551–570

    Google Scholar 

  15. J. Jagur-Grodzinski, React. Funct. Polym. 39, 99–138 (1999)

    Google Scholar 

  16. S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, Compos. Sci. Technol. 61, 1189–1224 (2001)

    Google Scholar 

  17. D.D. Woodland, W.N. Unertl, Wear 203–204, 685–691 (1997)

    Google Scholar 

  18. J. Schöfer, E. Santner, Wear 222, 74–83 (1998)

    Google Scholar 

  19. T. Kaule, Ph.D. thesis, Johaness-Gutenber-Universität, Mainz, Germany (2012), http://d-nb.info/1031360751/34

  20. F. Dinelli, G.J. Leggett, P.H. Shipway, Nanotechnology 16, 675–682 (2005)

    ADS  Google Scholar 

  21. J.L. Gilbert, J.D. Wernle, UHMWPE Biomaterial Handbook (2009)

    Google Scholar 

  22. O.M. Leung, C. Goh, Science 255, 2407–2410 (1992)

    Google Scholar 

  23. Z. Elkaakour, J.P. Aimé, T. Bouhacina, C. Odim, T. Masuda, Phys. Rev. Lett. 73, 3231–3234 (1994)

    ADS  Google Scholar 

  24. R.N. Leach, F. Stevens, C. Seiler, S.C. Langford, J.T. Dickinson, Langmuir 19, 10225–10229 (2003)

    Google Scholar 

  25. B.K.P. Wong, S.K. Sinha, J.P.Y. Tan, K.Y. Zeng, Tribol. Lett. 17, 609–615 (2004)

    Google Scholar 

  26. R.B. Mohamed Sani, S.K. Sinha, J.P. Ying Tan, K.Y. Zeng, Philos. Mag. 85, 2101–2122 (2005)

    Google Scholar 

  27. A. Rubin, C. Gauthier, R. Schirrer, Wear 303, 40–48 (2013)

    Google Scholar 

  28. R. Kaneko, E. Hamada, Wear 162, 370–377 (1993)

    Google Scholar 

  29. A. Khurshudov, K. Kato, J. Vac. Sci. Technol. B. 13, 1938–1944 (1995)

    Google Scholar 

  30. F. Iwata, T. Matsumoto, A. Sasaki, Nanotechnology 11, 10–15 (2000)

    ADS  Google Scholar 

  31. X.P. Wang, M.M. Loy, X. Xiao, Nanotechnology 13, 478–483 (2002)

    ADS  Google Scholar 

  32. R.H. Schmidt, G. Haugstad, W.L. Gladfelter, Langmuir 19, 898–909 (2003)

    Google Scholar 

  33. R.H. Schmidt, G. Haugstad, W.L. Gladfelter, Langmuir 19, 10390–98 (2003)

    Google Scholar 

  34. B. Götsmann, U. Dürig, Langmuir 20, 1495–1500 (2004)

    Google Scholar 

  35. R. Szoszkiewicz, T. Okada, S.J. Jones, T.-D. Li, W.P. King, S.R. Mader, E. Riedo, Nano Lett. 7, 1064–69 (2007)

    ADS  Google Scholar 

  36. E. Gnecco, E. Riedo, W.P. King, S.R. Mader, R. Szoszkiewicz, Phys. Rev. B 79, 235421 (2009)

    ADS  Google Scholar 

  37. M. D’Acunto, S. Napolitano, P. Pingue, P. Giusti, P. Rolla, Mater. Lett. 61, 3305–3309 (2007)

    Google Scholar 

  38. S. Napolitano, M. D’Acunto, P. Baschieri, E. Gnecco, P. Pingue, Nanotechnology 30, 475301 (2012)

    Google Scholar 

  39. K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  40. R.W. Carpick, D.F. Ogletree, M. Salmeron, J. Colloid Interface Sci. 211, 395–400 (1999)

    Google Scholar 

  41. M. Kopycinska-Müller, R.H. Geiss, D.C. Hurley, Ultramicroscopy 106, 466–474 (2006)

    Google Scholar 

  42. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, J. Colloid Interface Sci. 53, 314–325 (1975)

    Google Scholar 

  43. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. London A 324, 301–313 (1971)

    ADS  Google Scholar 

  44. V. Bubosek, D.C. Prevorsek, Int. J. Polym. Mater. 47, 569–572 (2000)

    Google Scholar 

  45. J. Cayer-Barrioz, D. Mazuyer, A. Tonck, P. Kapsa, A. Chateauminois, Tribol. Int. 39, 62–69 (2006)

    Google Scholar 

  46. K.L. Johnson, in Microstructure and Microtribology of Polymer Surfaces, ed. by V.V. Tsukruk, K. Wahl, ACS Symposium Series, USA (1998)

    Google Scholar 

  47. B. Götsmann, U. Dürig, S. Sills, J. Frommer, C.J. Hawker, Nano Lett. 6, 296–300 (2006)

    ADS  Google Scholar 

  48. M. Surtchev, N.R. de Souza, B. Jérôme, Nanotechnology 16, 1213–20 (2005)

    ADS  Google Scholar 

  49. A. Schallamach, Wear 17, 301 (1971)

    Google Scholar 

  50. G.A.D. Briggs, B.J. Briscoe, Nature 262, 381–382 (1976)

    ADS  Google Scholar 

  51. B.J. Briscoe, T.A. Stolarski, Nature 281, 206–208 (1979)

    ADS  Google Scholar 

  52. M. Barquins, A.D. Roberts, J. Phys. D: Appl. Phys. 19, 547–563 (1986)

    ADS  Google Scholar 

  53. Y.J. Mergler, R.P. Schaake, J. Appl. Polym. Sci. 92, 2689–2692 (2004)

    Google Scholar 

  54. A. Ghorbal, S. Bistac, M. Schmitt, J. Polym. Sci.: Part B: Polym. Phys. 44, 2449–2454 (2006)

    Google Scholar 

  55. P. Samyn, G. Schoukens, P. De Baets, Wear 270, 57–72 (2010)

    Google Scholar 

  56. B.J. Briscoe, S.K. Sinha, Mat.-wiss. u. Werkstofftech, 34, 989–1001 (2003)

    Google Scholar 

  57. C.J. Rand, A.J. Crosby, Appl. Phys. Lett. 89, 261907 (2006)

    ADS  Google Scholar 

  58. S. Bistac, A. Ghorbal, M. Schmitt, Prog. Org. Coat. 55, 345–354 (2006)

    Google Scholar 

  59. H.-Y. Nie, M.J. Walzak, N.S. McIntyre, Appl. Surf. Sci. 253, 2320–2326 (2006)

    ADS  Google Scholar 

  60. P.G. Whitten, H.R. Brown, Phys. Rev. E 76, 026101 (2007)

    ADS  Google Scholar 

  61. A. Dasari, Z.-Z. Yu, Y.-W. Mai, Acta Mater. 55, 635–646 (2007)

    Google Scholar 

  62. W. Brostow, W. Chonkaew, R. Mirshams, A. Srivastava, Polym. Eng. Sci. 48, 2060–2065 (2008)

    Google Scholar 

  63. J. Jing, P.N. Henriksen, H. Wang, J. Mater. Sci. 30, 5700–5704 (1995)

    ADS  Google Scholar 

  64. T. Aoike, T. Yamamoto, H. Uehara, T. Yamanobe, T. Komoto, Langmuir 17, 5688–5692 (2001)

    Google Scholar 

  65. A.G. Khurshudov, K. Kam, Wear, 205, 1–10 (1997)

    Google Scholar 

  66. T. Aoike, H. Uehara, T. Yamanobe, T. Komoto, Langmuir 17, 2153–2159 (2001)

    Google Scholar 

  67. Y. Sun, Y. Yan, Z. Hu, X. Zhao, T. Sun, S. Dong, Scanning 35, 308–315 (2013)

    Google Scholar 

  68. G.F. Meyers, B.M. DeKoven, J.T. Seitzj, Langmuir 8, 2330–2335 (1992)

    Google Scholar 

  69. J.P. Pickering, G.J. Vancso, Appl. Surf. Sci. 148, 147–154 (1999)

    ADS  Google Scholar 

  70. H. Uehara, T. Asakawa, M. Kakiage, T. Yamanobe, T. Komoto, Langmuir 22, 4985–4991 (2006)

    Google Scholar 

  71. J.S.G. Ling, G.J. Leggett, A.J. Murray, Polymer 39, 5913–5921 (1998)

    Google Scholar 

  72. B.D. Beake, P.H. Shipway, G.J. Leggett, Polymer 42, 7025–7031 (2001)

    Google Scholar 

  73. B.D. Beake, G.J. Leggett, Polymer 43, 319–327 (2002)

    Google Scholar 

  74. B.D. Beake, P.H. Shipway, G.J. Leggett, Wear 256, 118–125 (2004)

    Google Scholar 

  75. M.D. Garrison, R. Luginbühl, R.M. Overney, B.D. Ratner, Thin Solid Films 352, 13–2 (1999)

    ADS  Google Scholar 

  76. B.D. Beake, G.J. Leggett, M.R. Alexander, Polymer 42, 2647–2653 (2001)

    Google Scholar 

  77. F. Dinelli, G.J. Leggett, M.R. Alexander, J. Appl. Phys. 91, 3841–3846 (2002)

    ADS  Google Scholar 

  78. R. Berger, Y. Cheng, R. Forch, B. Gotsmann, J.S. Gutmann, T. Pakula, U. Rietzler, Langmuir 23, 3150–3156 (2007)

    Google Scholar 

  79. Y. Karade, S.A. Pihan, W.H. Brünger, A. Dietzel, R. Berger, K. Graf, Langmuir 25, 3108–3114 (2009)

    Google Scholar 

  80. R.H. Schmidt, G. Haugstad, W.L. Gladfelter, Langmuir 15, 317–321 (1999)

    Google Scholar 

  81. F. Dinelli, C. Buenviaje, R.M. Overney, J. Chem. Phys. 113, 2043–2058 (2000)

    ADS  Google Scholar 

  82. J. Fu, B. Li, Y. Han, J. Chem. Phys. 123, 064713 (2005)

    ADS  Google Scholar 

  83. H. Fischer, Macromolecules 35, 3592–3595 (2002)

    ADS  Google Scholar 

  84. L. Nick, A. Kindermann, J. Fuhrmann, Colloid Polym. Sci. 272, 367–371 (1994)

    Google Scholar 

  85. J.H. Maas, M.A. Cohen, Stuart, G. J. Fleer Thin Solid Films 358, 234–240 (2000)

    ADS  Google Scholar 

  86. C. Buenviaje, F. Dinelli, R. Overney, Macromol. Symposia 166, 201–212 (2001)

    Google Scholar 

  87. T. Aoike, T. Ikeda, H. Uehara, T. Yamanobe, T. Komoto, Langmuir 18, 2949–2951 (2002)

    Google Scholar 

  88. S.A. Pihan, S.G.J. Emmerling, H.-J. Butt, J.S. Gutmann, R. Berger, Wear 271, 2852–2856 (2011)

    Google Scholar 

  89. R.H. Rice, P. Mokarian-Tabari, W.P. King, R. Szoszkiewicz, Langmuir 28, 13503–13511 (2012)

    Google Scholar 

  90. X. Jin, W.N. Unertl, Appl. Phys. Lett. 61(6), 657–659 (1992)

    ADS  Google Scholar 

  91. P. Pingue, M. Lazzarino, F. Beltram, C. Cecconi, P. Baschieri, C. Frediani, C. Ascoli, J. Vac. Sci. Technol. B 15(4), 1398–1401 (1997)

    Google Scholar 

  92. S.F.Y. Li, H.T. Ng, P.C. Zhang, P.K.H. Ho, L. Zhou, G.W. Bao, S.L.H. Chan, Nanotechnology 8, 76–81 (1997)

    ADS  Google Scholar 

  93. L.A. Porter, A.E. Ribbe, J.M. Buriak. Nano Lett. 3 (8), 1043–1047 (2003)

    Google Scholar 

  94. J. Lekki, S. Kumar, S.S. Parihar, S. Grange, C. Baur, R. Foschia, A. Kulik, Rev. Sci. Instr. 75(11), 4646–4650 (2004)

    ADS  Google Scholar 

  95. J.A. Blach, G.S. Watson, C.L. Brown, D.K. Pham, J. Wright, D.V. Nicolau, S. Myhra, Thin Solid Films 459, 95–99 (2004)

    ADS  Google Scholar 

  96. T.A. Jung, A. Moser, H.J. Hug, D. Brodbeck, R. Hofer, H. R. Hidber, U.D. Schwarz, Ultramicroscopy 42, Part B, 1446 (1992)

    Google Scholar 

  97. M. Wendel, S. Kühn, H. Lorenz, J.P. Kotthaus, M. Holland, Appl. Phys. Lett. 65, 1775 (1994)

    ADS  Google Scholar 

  98. B. Klehn, U. Kunze, J. Appl. Phys. 85(7), 3897–3903 (1999)

    ADS  Google Scholar 

  99. K. Wiesauer, G. Springholz, J. Appl. Phys. 88(12), 7289–7297 (2000)

    ADS  Google Scholar 

  100. B. Cappella, H. Sturm, S.M. Weidner, Polymer 43, 4461–4466 (2002)

    Google Scholar 

  101. C. Balocco, A.G. Jones, J.M. Kingsley, J.R. Chan, X.Q. Huang, A.M. Song, Jpn. J. Appl. Phys. 45(3B), 2095–2098 (2006)

    ADS  Google Scholar 

  102. F.J. Rubio-Sierra, A. Yurtsever, M. Hennemeyer, W.M. Heckl, R.W. Stark, Phys. Stat. Sol. A 203(6) (2006)

    Google Scholar 

  103. Y. Wang, X. Hong, J. Zeng, B. Liu, B. Guo, H. Yan, Small 5(4), 477–483 (2009)

    Google Scholar 

  104. X. Lu, C. Balocco, F. Yang, A.M. Song, IEEE Trans. Nanotech. 10(1), 53–57 (2011)

    ADS  Google Scholar 

  105. W. Liu, Y. Yan, Z. Hub, X. Zhao, J. Yan, S. Dong, Appl. Surf. Sci. 258, 2620–2626 (2012)

    ADS  Google Scholar 

  106. A. Buford, T. Goswami, Mater. Des. 25, 385–393 (2004)

    Google Scholar 

  107. B.D. Ulery, L.S. Nair, C.T. Laurecin, J. Polym. Sci. B Polym. Phys. 49, 832–864 (2011)

    ADS  Google Scholar 

  108. L.A. Pruitt, Biomaterials 26, 905–15 (2005)

    Google Scholar 

  109. H.J. Butt, B. Cappella, M. Kappl, Surf. Sci. Rep. 59, 1–152 (2005)

    ADS  Google Scholar 

  110. L.S. Nair, C.T. Laurecin, Prog. Polym. Sci. 32, 762–798 (2007)

    Google Scholar 

  111. M. D’Acunto, in Advances in Contact Mechanics: Implications for Materials Science, Engineering and Biology, ed. by R. Buzio and U. Valbusa, Transworld Research Network (2006)

    Google Scholar 

  112. J. Fisher, E. Ingham, Wear Debris in Encyclopedia of Biomaterials and biomedical Engineering (M. Dekker edition, New York, 2004)

    Google Scholar 

  113. A. Wang, D.C. Sun, S.S. Yau, B. Edwards, M. Sokol, A. Essner, V.K. Polineni, C. Stark, H. Dunbleton, Wear 203, 230–41 (1997)

    Google Scholar 

  114. R.S. Pascaud, W.T. Evans, P.J. McCullagh, D.P. Fitzpatrick, Biomaterials 18, 727–35 (1997)

    Google Scholar 

  115. S.M. Kurtz, L.A. Pruitt, C.W. Jewett, J.R. Foulds, A.A. Edidin, Biomaterials 20, 1449–62 (1999)

    Google Scholar 

  116. A.A. Edidin, L. Pruitt, C.W. Jewett, D.J. Crane, D. Roberts, S.M. Kurtz, J. Arthroplasty 14, 616–627 (1999)

    Google Scholar 

  117. L. Costa, M.P. Luda, L. Trossarelli, E.M. Brach del Prever, M. Crova, P. Gallinaro, Biomaterials 19, 659 (1998)

    Google Scholar 

  118. A. Wang, Wear 248, 38–47 (2001)

    Google Scholar 

  119. L. Kang, A.L. Galvin, T.D. Brown, Z. Jin, J. Fisher, J. Biomechanics 41, 340–346 (2008)

    Google Scholar 

  120. L. Mattei, F. Di Puccio, E. Ciulli, Tribol. Int. 63, 66–77 (2013)

    Google Scholar 

Download references

Acknowledgments

M.D. wishes to acknowledge NanoICT laboratory for hospitality during the review composition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario D’Acunto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Acunto, M., Dinelli, F., Pingue, P. (2015). Nanowear of Polymers . In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_24

Download citation