Advertisement

From Nano and Microcontacts to Wear of Materials

  • Rogerio Colaço
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter is a revised version of the text “Surface damage mechanisms: from nano and microcontacts to wear of materials” published in 2007 Meyer’s and Gnecco’s book “Fundamentals of Friction and Wear on the Nanoscale” [1].

Keywords

Atomic Force Microscope Wear Rate Abrasive Wear Surface Free Energy Wear Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would like to thank the European Science Foundation and the Portuguese Foundation for Science and Technology for financial support under project ESF Eurocore 07-FANAS-FP-009. Also I thank all the students and colleagues at the Nanolab-IST, namely Dr. Sérgio Graça, for valuable discussions over the years.

References

  1. 1.
    R. Colaço, Surface damage mechanisms: from nano and microcontacts to wear of materials, in Fundamentals of Friction and Wear on the Nanoscale, ed. by E. Meyer, E. Gnecco. (Springer, 2007) pp. 453–480Google Scholar
  2. 2.
    J.T. Dickinson, Single asperity nanometer-scale studies of tribochemistry, in Fundamentals of Friction and Wear on the Nanoscale, ed.by E. Meyer, E. Gnecco. (Springer, 2007), pp. 480–521Google Scholar
  3. 3.
    H.P. Jost, Lubrication (Tribology)—A Report of the Present Position and Industry’s Needs (Department of Science and Education, H. M. Stationary Office, London, 1966)Google Scholar
  4. 4.
    H.P. Jost, Economic Impact of Tribology (Mechanical Engineering, 1975), pp. 26–33Google Scholar
  5. 5.
    E. Rabinowicz, Friction and Wear of Materials, 2nd edn. (Wiley, New York, 1995)Google Scholar
  6. 6.
    Canada, A Strategy for Tribology in Canada (National research Council Canada, Canada, 1986)Google Scholar
  7. 7.
    Soc, T.I.C.M.E., An Investigation on the Application of Tribology in China. (Tribology Institute of the Chinese Mechanical Engineering Society, China, 1986)Google Scholar
  8. 8.
    J. Krim, Surface science and the atomic scale origins of friction: what once was old is new again. Surf. Sci. 500, 741–758 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    I.M. Hutchings, Tribology: Friction and Wear of Engineering Materials (Edward Arnold, London, 1992)Google Scholar
  10. 10.
    B. Bushan, An Introduction to Tribology (Wiley, New York, 2002)Google Scholar
  11. 11.
    J.B. Adams et al., Adhesion, lubrication and wear on the atomic scale. Surf. interface Anal. 31, 619–626 (2001)CrossRefGoogle Scholar
  12. 12.
    S.S. Perry, W.T. Tysoe, Frontiers of fundamental tribological research. Tribol. Lett. 19(3), 151–161 (2005)CrossRefGoogle Scholar
  13. 13.
    J.A. Greenwood, Williamson, J.B. Contact of nominally flat surfaces, in Proceedings of the Royal Society of London, vol. A295 (1966), pp. 300–319Google Scholar
  14. 14.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. PRL 56(9), 930–933 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    S. Sundararajan, B. Bhushan, Micro/nanotribology of ultra-thin hard amorphous carbon coatings using atomic force/friction force microscopy. Wear 225–229, 678–689 (1999)CrossRefGoogle Scholar
  16. 16.
    B. Bhushan, Nanos to microscale wear and mechanical characterization using scanning probe microscopy. Wear 251, 1105–1123 (2001)CrossRefGoogle Scholar
  17. 17.
    R. Kaneko, K. Nonaka, K. Yasuda, Scanning tunneling microscopy and atomic force microscopy for microtribology. J. Vac. Sci. Technol. A Vac. Surf. Films 6(2), 291–292 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Jiang et al., An investigation of the experimental conditions and characteristics of a nanowear test. Wear 181–183, 777–783 (1995)CrossRefGoogle Scholar
  19. 19.
    S. Miyake, T. Miyamoto, R. Kaneko, Increase of nanometer-scale wear of polished chemical-vapor-deposited diamond films due to niytogen ion implantation. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. Atoms 108, 70–74 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    K.-H. Chung et al., Tribological characteristics of probe tip and PZT media for AFM-based recording technology. IEEE Trans. Magn. 41(2), 849–854 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S. Graça, R. Colaço, R. Vilar, Using atomic force microscopy to retrieve nanomechanical surface properties of materials. Mater. Sci. Forum 514–516, 1598–1602 (2006)Google Scholar
  22. 22.
    A.R. Machcha, M.H. Azarian, F.E. Talke, An ivestigation of nano-wear during contact recording. Wear 197, 211–220 (1996)CrossRefGoogle Scholar
  23. 23.
    E. Gnecco, R. Bennewitz, E. Meyer, Abrasive wear on the atomic scale. Phys. Rev. Lett. 88(21), 215501/1-215501/4 (2002)Google Scholar
  24. 24.
    W. Gulbinski, T. Suszko, D. Pailharey, High load AFM friction and wear experiments on V2O5 thin films. Wear 254, 988–993 (2003)CrossRefGoogle Scholar
  25. 25.
    J.Y. Park et al., Friction and adhesion properties of clean and oxidized Al-Ni-Co decagonal quasycrystals: a UHV atomic force microscopy/scanning tunneling microscopy study. Tribol. Lett. 17(3), 629–636 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Drelich, G.W. Tormoen, E.R. Beach, Determination of solid surface tension from particle-substrate pull-off forces measured with the atomic force microscope. J. Colloid Interface Sci. 280, 484–497 (2004)CrossRefGoogle Scholar
  27. 27.
    A. Schirmeisen, Wear: one atom after the other. Nat. Nanotechnol. 8(2), 81–82 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    K.-H.Z. Gahr, Microstructure and Wear of Materials (Elsevier Scientific Publishing Company, Amsterdam, 1987), p. 560Google Scholar
  29. 29.
    H. Luth, Surfaces and Interfaces of Solids (Springer, Berlin, 1993)Google Scholar
  30. 30.
    F.P. Bowden, A.J.W. Moore, D. Tabor, The ploughing and adhesion of sliding metals. J. Appl. Phys. 14, 80–91 (1943)ADSCrossRefGoogle Scholar
  31. 31.
    K.L. Johnson, K. Kendall, Roberts, D. Surface energy and the contact of elastic solids, in Proceedings of Royal Society London, vol. A 324 (1971), pp. 301–313Google Scholar
  32. 32.
    K.N.G. Fuller, D. Tabor, The effect of surface roughness on the adhesion of elastastic solids, in Proceedings of Royal Society London, vol. A 345 (1975), pp. 327–342Google Scholar
  33. 33.
    T.R. Thomas (ed.), Rough Surfaces (Longman, London and New York, 1982)Google Scholar
  34. 34.
    L. Zhou et al., Slider vibration reduction using slider surface texture. Microsyst. Technol. Micro-Nanosyst. Inf. Storage Process. Syst. 11(8–10), 857–866 (2005)Google Scholar
  35. 35.
    T. Hisakado, T. Tsukisoe, Effect of surface-roughness on transient wear. J. Jpn. Soc. Lubr. Eng. 21(4), 228–235 (1976)Google Scholar
  36. 36.
    S. Ganti, B. Bhushan, Generalized fractal analisys and its application to engineering surfaces. Wear 180, 17–34 (1995)CrossRefGoogle Scholar
  37. 37.
    H.H. Gatzen, M. Beck, Wear of single crystal silicon as a function of surface roughness. Wear 254, 907–910 (2003)CrossRefGoogle Scholar
  38. 38.
    X. Wang, K. Kato, K. Adachi, Running-in effect on the load-carrying capacity of a water-lubricated SiC thrust bearing. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 219(J2), 117–124 (2005)Google Scholar
  39. 39.
    M.A. Fortes, R. Colaço, M.F. Vaz, Contact mechanics of cellular solids. Wear 230, 1–10 (1999)CrossRefGoogle Scholar
  40. 40.
    D. Tabor, Lubrication and wear. in Surface and Colloid Science, ed. by E. Matijevic (Wiley, New York, 1972), pp. 245–312Google Scholar
  41. 41.
    R. Colaço, R. Vilar, On the influence of retained austenite in the abrasive wear behaviour of a laser surface melted tool steel. Wear 258(1–4), 225–231 (2005)CrossRefGoogle Scholar
  42. 42.
    R. Holm, Electrical Contacts (H. Gerber, Stockholm, 1946)Google Scholar
  43. 43.
    J.F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)ADSCrossRefGoogle Scholar
  44. 44.
    E. Rabinowicz, Friction and Wear of Materials, 2nd edn. (Wiley, New York, 1965)Google Scholar
  45. 45.
    D.A. Rigney, Some thoughts on sliding wear. Wear 152, 187–192 (1992)CrossRefGoogle Scholar
  46. 46.
    D. Tabor, The Hardness of Metals. Oxford Classic Texts (Clarendon Press, Oxford, 1951)Google Scholar
  47. 47.
    K. Kato, Abrasive wear of metals. Tribol. Int. 30(5), 333–338 (1997)CrossRefGoogle Scholar
  48. 48.
    U. Landman, W.D. Luedtke, E.M. Ringer, Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear 153(1), 3–30 (1992)Google Scholar
  49. 49.
    J.A. Harrison et al., Effect of atomic-scale surface-roughness on friction—a molecular-dynamics study of diamond surfaces. Wear 168(1–2), 127–133 (1993)CrossRefGoogle Scholar
  50. 50.
    R. Bassani, M. D’Acunto, Nanotribology: tip-sample wear under adhesive contact. Tribol. int. 33, 443–452 (2000)CrossRefGoogle Scholar
  51. 51.
    M. D’Acunto, Wear and diffusive processes. Tribol. int. 36, 553–558 (2003)CrossRefGoogle Scholar
  52. 52.
    M. D’Acunto, Theoretical approach for the quantification of wear mechanisms on the nanoscale. Nanotechnology 15, 795–801 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    S.C. Lim, M.F. Ashby, Wear-mechanism maps. Acta Metallurgica 35(1), 1–24 (1987)CrossRefGoogle Scholar
  54. 54.
    D.F. Wang, K. Kato, Nano-scale fatigue wear of carbon nitride coatings: part I-wear properties. J. Tribol. Trans. ASME 125, 430–436 (2003)CrossRefGoogle Scholar
  55. 55.
    A.G. Khursudov, K. Kato, H. Koide, Wear of the AFM diamond tip sliding against silicon. Wear 203–204, 22–27 (1997)CrossRefGoogle Scholar
  56. 56.
    K.-H. Chung, Y.H. Lee, D.-E. Kim, Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102, 161–171 (2005)CrossRefGoogle Scholar
  57. 57.
    R.W. Carpick, M. Salmeron, Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)CrossRefGoogle Scholar
  58. 58.
    R. Lüthi et al., Nanotribology: an UHV-SFM study on thin films of C60 and AgBr. Surf. Sci. 338(1–3), 247–260 (1995)ADSCrossRefGoogle Scholar
  59. 59.
    P.E. Sheehan, The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410(1–3), 151–155 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    E. Gnecco et al., Friction and wear on the atomic scale. Wear 254, 859–862 (2003)CrossRefGoogle Scholar
  61. 61.
    A. Socoliuc et al., Ripple formation induced in localized abrasion. Phys. Rev. B 68, 115416/1-115416/4 (2003)Google Scholar
  62. 62.
    B. Bhushan, Nanotribology and nanomechanics. Wear 259, 1507–1531 (2005)CrossRefGoogle Scholar
  63. 63.
    K.-H. Chung, D.-E. Kim, Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15(2), 135–144 (2003)CrossRefGoogle Scholar
  64. 64.
    B. Bhushan, A.V. Kulkarni, Effect of normal load on microscale friction measurements. Thin Solid Films 278(1–2), 49–56 (1996)ADSCrossRefGoogle Scholar
  65. 65.
    J. Hu et al., Atomic scale friction and wear of mica. Surf. Sci. 327, 358–370 (1995)ADSCrossRefGoogle Scholar
  66. 66.
    S. Miyake, 1 nm deep mechanical processing of muscovite mice by atomic-force microscopy. Appl. Phys. Lett. 67(20), 2925–2927 (1995)ADSCrossRefGoogle Scholar
  67. 67.
    D.D. Woodland, W.N. Unertl, Initial wear in nanometer-scale contacts on polystyrene. Wear 203–204, 685–691 (1997)CrossRefGoogle Scholar
  68. 68.
    S.P. Ho et al., Nanotribology of CoCr-UHMWPE TJR prosthesis using atomic force microscopy. Wear 253, 1145–1155 (2002)CrossRefGoogle Scholar
  69. 69.
    J.S.S. Wong et al., Scratch damage of polymers in nanoscale. Acta Materialia 52(2), 431–443 (2004)CrossRefGoogle Scholar
  70. 70.
    Z.G. Jiang et al., An investigation of the experimental conditions and characteristics of a nano-wear test. Wear 181, 777–783 (1995)CrossRefGoogle Scholar
  71. 71.
    Z.G. Jiang et al., Dependence of nano-friction and nano-wear on loading force for sharp diamond tips sliding on SI, Mn-Zn ferrite, and Au. J. Tribol. Trans. ASME 117(2), 328–333 (1995)CrossRefGoogle Scholar
  72. 72.
    W. Lu, K. Komvopoulos, Nanomechanical and nanotribological properties of carbon, chromium, and titanium carbide ultrathin films. J. Tribol. Trans. ASME 123(4), 717–724 (2001)CrossRefGoogle Scholar
  73. 73.
    J.M. Helt, J.D. Batteas, Wear of mica under aqueous environments: direct observation of deffect nucleation by AFM. Langmuir 21, 633–639 (2005)CrossRefGoogle Scholar
  74. 74.
    D.F. Wang, K. Kato, Nano-scale fatigue wear of carbon nitride coatings: part II-wear mechanisms. J. Tribol. Trans. ASME 125, 437–444 (2003)CrossRefGoogle Scholar
  75. 75.
    R. Colaco, An AFM study of single-contact abrasive wear: the Rabinowicz wear equation revisited. Wear 267(11), 1772–1776 (2009)CrossRefGoogle Scholar
  76. 76.
    R. Colaço, R. Vilar, A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear 254(7–8), 625–634 (2003)CrossRefGoogle Scholar
  77. 77.
    C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17), 11085–11088 (1998)ADSCrossRefGoogle Scholar
  78. 78.
    J.A. Zimmerman et al., Surface step effects on nanoindentation. Phys. Rev. Lett. 87(16), 165507 (2001)Google Scholar
  79. 79.
    I. Szlufarska et al., Atomistic mechanisms of amorphization during nanoindentation of SiC: a molecular dynamics study. Phys. Rev. B 71(17), 174113 (2005)Google Scholar
  80. 80.
    E.T. Lilleodden et al., Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51(5), 901–920 (2003)ADSCrossRefzbMATHGoogle Scholar
  81. 81.
    N.A. Fleck, J.W. Hutchinson, A phenomenological theory to for strain gradient effects in plasticity. J. Mech. Phys. Solids 41(12), 1825–1857 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  82. 82.
    K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13(5), 1300–1306 (1998)ADSCrossRefGoogle Scholar
  83. 83.
    Y. Liu, A.H.W. Ngan, Depth dependence of hardness in copper single crystals measured by nanoindentation. Scripta Mater. 44, 237–241 (2001)CrossRefGoogle Scholar
  84. 84.
    N.A. Stelmashenko et al., Microindentations on W and MO oriented single-crystals—an STM study. Acta Metallurgica ET Materialia 41(10), 2855–2865 (1993)CrossRefGoogle Scholar
  85. 85.
    Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals. J. Mater. Res. 10(4), 853–863 (1995)ADSCrossRefGoogle Scholar
  86. 86.
    A.A. Elmoustafa, D.S. Stone, Indentation size effect in polycrystalline FCC metals. Acta Materialia 50(14), 3641–3650 (2002)CrossRefGoogle Scholar
  87. 87.
    S. Graça, R. Colaço, R. Vilar, Indentation size effect in laser clad nickel and cobalt, Surf. Coat. Technol. 202(3), 538–548, 2007Google Scholar
  88. 88.
    S.J. Bull, On the origins and mechanisms of the indentation size effect. Z. Metallkd 94(7), 787–792 (2003)CrossRefGoogle Scholar
  89. 89.
    H. Li et al., The frictional component of the indentation size effect in low load microhardness testing. J. Mater. Res. 8(5), 1028–1032 (1993)ADSCrossRefGoogle Scholar
  90. 90.
    J.G. Swadener et al., A mechanistic description of combined hardening and size effects. Scripta Materialia 47(5), 343–348 (2002)CrossRefGoogle Scholar
  91. 91.
    H. Gao, Y. Huang, Geometrcally necessary dislocation and size-dependent plasticity. Scripta Materialia 48, 113–118 (2003)CrossRefGoogle Scholar
  92. 92.
    W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Sol. 46(3), 411–425 (1998)ADSCrossRefzbMATHGoogle Scholar
  93. 93.
    T.-Y. Zhang, W.-H. Xu, Surface effects on nanindentation. J. Mater. Res. 17(7), 1715–1720 (2002)ADSCrossRefGoogle Scholar
  94. 94.
    I.L. Jager, Surface free energy—a possible source of error in nanohardness? Surf. Sci. 565(2–3), 173–179 (2004)ADSCrossRefGoogle Scholar
  95. 95.
    S. Graça, R. Colaço, R. Vilar, Indentation size effect in nickel and cobalt laser clad coatings. Surf. Coat. Technol. 202(3), 538–548 (2007)CrossRefGoogle Scholar
  96. 96.
    S. Graça et al., A displacement sensing nanoindentation study of tribo-mechanical properties of the Ni-Co system. Appl. Surf. Sci. 254, 7306–7313 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    S. Graça, R. Vilar, R. Colaço, The role of indentation size effect on the abrasive wear behaviour of ductile metallic materials: a nanotribological study. Wear 268(7–8), 931–938 (2010)CrossRefGoogle Scholar
  98. 98.
    F.R.N. Nabarro, J.P. Hirth, Dislocations in Solids, vol. 11, ed. by F.R.N. Nabarro, J.P. Hirth (Elsiever, Amsterdam, 2002)Google Scholar
  99. 99.
    M.F. Ashby, The deformation of plastically non-homogeneous alloys. Phyl. Mag. 21, 399–424 (1970)ADSCrossRefGoogle Scholar
  100. 100.
    J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metallurgica 1(2), 153–162 (1953)CrossRefGoogle Scholar
  101. 101.
    N.A. Fleck et al., Strain gradient plasticity: theory and experiment. Acta Metall. Mater 42(2), 475–487 (1994)CrossRefMathSciNetGoogle Scholar
  102. 102.
    N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33, 295–361 (1997)CrossRefGoogle Scholar
  103. 103.
    Z. Ma et al., Indentation depth dependence of the mechanical strength of Ni films. J. Appl. Phys. 103(4), 043512 (2008)Google Scholar
  104. 104.
    S. Graça, P.A. Carvalho, R. Colaço, Dislocation structures in nanoindented ductile metals—a TEM direct observation. J. Phys. D Appl. Phys. 44, 335402 (2011)CrossRefGoogle Scholar
  105. 105.
    S. Graça, R. Colaço, On the influence of indentation size effect on the wear of metallic alloy. Int. J. Surf. Sci. Eng. 5(5/6), 457–462 (2011)Google Scholar
  106. 106.
    A. Misra, I. Finnie, On the size effect in abrasive and erosive wear. Wear 65, 359–373 (1981)CrossRefGoogle Scholar
  107. 107.
    U. Beerschwinger et al., Wear at microscopic scales and light loads for mems applications. Wear 181, 426–435 (1995)CrossRefGoogle Scholar
  108. 108.
    S. Sundararajan, B. Bhushan, Micro/nanotribological studies of polysilicon and SiC films for MEMS applications. Wear 217, 251–261 (1998)CrossRefGoogle Scholar
  109. 109.
    A.R. Krauss et al., Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices. Diam. Relat. Mater. 10(11), 1952–1961 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Instituto Superior Técnico, Universidade de LisboaLisbonPortugal

Personalised recommendations