Advertisement

Surface Forces Apparatus in Nanotribology

  • Carlos Drummond
  • Philippe Richetti
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

The Surface Forces Apparatus (SFA) has proven to be an excellent tool for research in nanotribology. It allows the study of single or multiple asperity contacts lubricated or not. The normal load, the contact area and the sliding velocity between the surfaces can be controlled and unambiguously measured with higher accuracy than in any conventional tribometer. Furthermore, an image of the surfaces in contact can be obtained as the surfaces are slid, allowing the monitoring of the real size and shape of the contact area and the distance or film thickness profile between the surfaces when atomically smooth surfaces are used. It is relatively simple to perform a comprehensive exploration of the full space of parameters to determine the important variables in the frictional behavior of the system. In this chapter the principles of operation and some experimental details of the Surface Forces Apparatus nanotribometer are described.

Keywords

Friction Force Mica Surface Surface Separation Ultra Thin Film Surface Force Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.A. Tomlinson, Philos. Mag. 6, 695–712 (1928)Google Scholar
  2. 2.
    J.T.G. Overbeek, M.J. Sparnaay, Discuss. Faraday Soc. 18, 12 (1954)Google Scholar
  3. 3.
    Y.I. Rabinovich, B.V. Derjaguin, N.V. Churaev, Adv. Colloid Interface Sci. 16, 63–78 (1982)Google Scholar
  4. 4.
    D. Tabor, R.H.S. Winterton, Proc. R. Soc. A 312, 435–450 (1969)ADSGoogle Scholar
  5. 5.
    J.N. Israelachvili, D. Tabor, Proc. R. Soc. A 331, 19–38 (1972)ADSGoogle Scholar
  6. 6.
    D. Dowson, History of Tribology, 2nd edn. (Professional Engineering Publishing Limited, London, 1998)Google Scholar
  7. 7.
    J.N. Israelachvili, D. Tabor, Wear 24, 386–390 (1973)Google Scholar
  8. 8.
    B.J. Briscoe, D.C.B. Evans, Proc. R. Soc. A 380, 389–407 (1982)ADSGoogle Scholar
  9. 9.
    A.I. Bailey, J.S. Courtney-Pratt, Proc. R. Soc. A 227, 500–515 (1955)ADSGoogle Scholar
  10. 10.
    B. Derjaguin, Kolloid-Zeitschrift 69, 155–164 (1934)Google Scholar
  11. 11.
    S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (University Press, Oxford, 1948)Google Scholar
  12. 12.
    J.N. Israelachvili, J. Colloid Interface Sci. 44, 259–272 (1973)Google Scholar
  13. 13.
    R.G. Horn, D.T. Smith, Appl. Opt. 30, 59–65 (1991)ADSGoogle Scholar
  14. 14.
    C. Mueller, P. Maechtle, C.A. Helm, J. Phys. Chem. 98, 11119–11125 (1994)Google Scholar
  15. 15.
    M. Heuberger, Rev. Sci. Instrum. 72, 1700–1707 (2001)ADSGoogle Scholar
  16. 16.
    M. Heuberger, G. Luengo, J. Israelachvili, Langmuir 13, 3839–3848 (1997)Google Scholar
  17. 17.
    J.N. Israelachvili, G.E. Adams, J. Chem. Soc., Faraday Trans. 1(74), 975–1001 (1978)Google Scholar
  18. 18.
    J. Israelachvili, Proc. Natl. Acad. Sci. U. S. A. 84, 4722–4724 (1987)ADSGoogle Scholar
  19. 19.
    J.N. Israelachvili, P.M. McGuiggan, J. Mater. Res. 5, 2223–2231 (1990)Google Scholar
  20. 20.
    J.L. Parker, H.K. Christenson, B.W. Ninham, Rev. Sci. Instrum. 60, 3135–3138 (1989)ADSGoogle Scholar
  21. 21.
    J. Israelachvili, Y. Min, M. Akbulut, A. Alig, G. Carver, W. Greene, K. Kristiansen, E. Meyer, N. Pesika, K. Rosenberg, H. Zeng, Rep. Prog. Phys. 73, 036601 (2010)ADSGoogle Scholar
  22. 22.
    J. Parker, A. Stewart, Prog. Colloid Polym. Sci. 88, 162–168 (1992)Google Scholar
  23. 23.
    A.M. Stewart, J.L. Parker, Rev. Sci. Instrum. 63, 5626 (1992)ADSGoogle Scholar
  24. 24.
    W.H. Briscoe, R.G. Horn, Langmuir 18, 3945–3956 (2002)Google Scholar
  25. 25.
    A. Tonck, J.M. Georges, J.L. Loubet, J. Colloid Interface Sci. 126, 150–163 (1988)Google Scholar
  26. 26.
    K.G. Lodge, Adv. Colloid Interface Sci. 19, 27–73 (1983)Google Scholar
  27. 27.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)zbMATHGoogle Scholar
  28. 28.
    A.M. Homola, J.N. Israelachvili, M.L. Gee, P.M. McGuiggan, J. Tribol. 111, 675 (1989)Google Scholar
  29. 29.
    G. Luengo, F.-J. Schmitt, R. Hill, J. Israelachvili, Macromolecules 30, 2482–2494 (1997)ADSGoogle Scholar
  30. 30.
    M.L. Gee, P.M. McGuiggan, J.N. Israelachvili, A.M. Homola, J. Chem. Phys. 93, 1895–1906 (1990)ADSGoogle Scholar
  31. 31.
    J. Israelachvili, P. McGuiggan, M. Gee, A. Homola, M. Robbins, P. Thompson, J. Phys.: Condens. Matter 2, SA89–SA98 (1990)Google Scholar
  32. 32.
    C. Drummond, J. Israelachvili, Phys. Rev. E 63, 041506 (2001)ADSGoogle Scholar
  33. 33.
    G. Luengo, J. Israelachvili, A. Dhinojwala, S. Granick, Wear 200, 328–335 (1996)Google Scholar
  34. 34.
    P.A. Schorr, T.C.B. Kwan, S.M. Kilbey, E.S.G. Shaqfeh, M. Tirrell, Macromolecules 36, 389–398 (2003)ADSGoogle Scholar
  35. 35.
    G. Luengo, M. Heuberger, J. Israelachvili, J. Phys. Chem. B 104, 7944–7950 (2000)Google Scholar
  36. 36.
    H. Yoshizawa, C. You-Lung, J. Israelachvili, Wear 168, 161–166 (1993)Google Scholar
  37. 37.
    H. Yoshizawa, Y.L. Chen, J. Israelachvili, J. Phys. Chem. 97, 4128–4140 (1993)Google Scholar
  38. 38.
    C. Drummond, J. Israelachvili, P. Richetti, Phys. Rev. E 67, 066110 (2003)ADSGoogle Scholar
  39. 39.
    B. Zappone, M. Ruths, G.W. Greene, G.D. Jay, J.N. Israelachvili, Biophys. J. 92, 1693–708 (2007)ADSGoogle Scholar
  40. 40.
    G.W. Greene, X. Banquy, D.W. Lee, D.D. Lowrey, J. Yu, J.N. Israelachvili, Proc. Natl. Acad. Sci. U. S. A. 108, 5255–5259 (2011)ADSGoogle Scholar
  41. 41.
    J. Van Alsten, S. Granick, Phys. Rev. Lett. 61, 2570–2573 (1988)ADSGoogle Scholar
  42. 42.
    J. Peachey, J. Van Alsten, S. Granick, Rev. Sci. Instrum. 62, 463–473 (1991)ADSGoogle Scholar
  43. 43.
    H. Hu, G. Carson, S. Granick, Phys. Rev. Lett. 66, 2758–2761 (1991)ADSGoogle Scholar
  44. 44.
    Y. Zhu, S. Granick, Phys. Rev. Lett. 87, 096104 (2001)ADSGoogle Scholar
  45. 45.
    A.L. Demirel, S. Granick, J. Chem. Phys. 115, 1498 (2001)ADSGoogle Scholar
  46. 46.
    S. Granick, H.-W. Hu, Langmuir 10, 3857–3866 (1994)Google Scholar
  47. 47.
    S. Granick, H.-W. Hu, G.A. Carson, Langmuir 10, 3867–3873 (1994)Google Scholar
  48. 48.
    J. Van Alsten, S. Granick, Macromolecules 23, 4856–4862 (1990)ADSGoogle Scholar
  49. 49.
    Y. Zhu, S. Granick, Macromolecules 36, 973–976 (2003)ADSGoogle Scholar
  50. 50.
    M. Ruths, S.A. Sukhishvili, S. Granick, J. Phys. Chem. B 105, 6202–6210 (2001)Google Scholar
  51. 51.
    J. Klein, D. Perahia, S. Warburg, Nature 352, 143–145 (1991)ADSGoogle Scholar
  52. 52.
    U. Raviv, R. Tadmor, J. Klein, J. Phys. Chem. B 105, 8125–8134 (2001)Google Scholar
  53. 53.
    R. Tadmor, J. Janik, J. Klein, Phys. Rev. Lett. 91, 115503 (2003)ADSGoogle Scholar
  54. 54.
    U. Raviv, S. Giasson, N. Kampf, J.-F. Gohy, R. Jérôme, J. Klein, Nature 425, 163–165 (2003)ADSGoogle Scholar
  55. 55.
    E. Eiser, J. Klein, T. Witten, L. Fetters, Phys. Rev. Lett. 82, 5076–5079 (1999)ADSGoogle Scholar
  56. 56.
    J. Klein, E. Kumacheva, D. Perahia, D. Mahalu, S. Warburg, Faraday Discuss. 98, 173–188 (1994)ADSGoogle Scholar
  57. 57.
    J. Klein, E. Kumacheva, J. Chem. Phys. 108, 6996–7009 (1998)ADSGoogle Scholar
  58. 58.
    U. Raviv, P. Laurat, J. Klein, Nature 413, 51–54 (2001)ADSGoogle Scholar
  59. 59.
    J. Seror, Y. Merkher, N. Kampf, L. Collinson, A.J. Day, A. Maroudas, J. Klein, Biomacromolecules 12, 3432–3443 (2011)Google Scholar
  60. 60.
    J. Seror, Y. Merkher, N. Kampf, L. Collinson, A.J. Day, A. Maroudas, J. Klein, Biomacromolecules 13, 3823–3832 (2012)Google Scholar
  61. 61.
    L. Bureau, Rev. Sci. Instrum. 78, 065110 (2007)ADSGoogle Scholar
  62. 62.
    D.D. Lowrey, K. Tasaka, J.H. Kindt, X. Banquy, N. Belman, Y. Min, N.S. Pesika, G. Mordukhovich, J.N. Israelachvili, Tribol. Lett. 42, 117–127 (2011)Google Scholar
  63. 63.
    L. Qian, G. Luengo, D. Douillet, M. Charlot, X. Dollat, E. Perez, Rev. Sci. Instrum. 72, 4171–4177 (2001)ADSGoogle Scholar
  64. 64.
    E. Charrault, X. Banquy, K. Kristiansen, J. Israelachvili, S. Giasson, Tribol. Lett. 50, 421–430 (2013)Google Scholar
  65. 65.
    R.A. Quon, J.M. Levins, T.K. Vanderlick, J. Colloid Interface Sci. 171, 474–482 (1995)Google Scholar
  66. 66.
    T. Grünewald, C.A. Helm, Langmuir 12, 3885–3890 (1996)Google Scholar
  67. 67.
    M. Zaüch, J. Vanicek, M. Heuberger, Rev. Sci. Instrum. 74, 260–266 (2003)Google Scholar
  68. 68.
    J. Van Alsten, S. Granick, Tribol. Trans. 33, 436–446 (1990)Google Scholar
  69. 69.
    J.N. Israelachvili, S.J. Kott, L.J. Fetters, J. Polym. Sci., Part B: Polym. Phys. 27, 489–502 (1989)ADSGoogle Scholar
  70. 70.
    A. Dhinojwala, S. Granick, J. Chem. Soc., Faraday Trans. 92, 619 (1996)Google Scholar
  71. 71.
    J.L. Parker, Langmuir 8, 551–556 (1992)Google Scholar
  72. 72.
    P. Frantz, N. Agrait, M. Salmeron, Langmuir 12, 3289–3294 (1996)Google Scholar
  73. 73.
    A.M. Stewart, Meas. Sci. Technol. 11, 298–304 (2000)ADSGoogle Scholar
  74. 74.
    F. Restagno, J. Crassous, E. Charlaix, M. Monchanin, Meas. Sci. Technol. 12, 16–22 (2001)ADSGoogle Scholar
  75. 75.
    S. Idziak, I. Koltover, J. Israelachvili, C. Safinya, Phys. Rev. Lett. 76, 1477–1480 (1996)ADSGoogle Scholar
  76. 76.
    S.H. Idziak, C.R. Safinya, R.S. Hill, K.E. Kraiser, M. Ruths, H.E. Warriner, S. Steinberg, K.S. Liang, J.N. Israelachvili, Science 264, 1915–1918 (1994)ADSGoogle Scholar
  77. 77.
    Y. Golan, A. Martin-Herranz, Y. Li, C. Safinya, J. Israelachvili, Phys. Rev. Lett. 86, 1263–1266 (2001)ADSGoogle Scholar
  78. 78.
    O.H. Seeck, H. Kim, D.R. Lee, D. Shu, I.D. Kaendler, J.K. Basu, S.K. Sinha, Europhys. Lett. 60, 376–382 (2002)ADSGoogle Scholar
  79. 79.
    S. Chodankar, E. Perret, K. Nygård, O. Bunk, D.K. Satapathy, R.M. Espinosa Marzal, T.E. Balmer, M. Heuberger, J.F. van der Veen, Europhys. Lett. 99, 26001 (2012)ADSGoogle Scholar
  80. 80.
    P. Mächtle, C. Müller, C.A. Helm, J. Phys. II 4, 481–500 (1994)Google Scholar
  81. 81.
    P. Frantz, F. Wolf, X.-D. Xiao, Y. Chen, S. Bosch, M. Salmeron, Rev. Sci. Instrum. 68, 2499–2504 (1997)ADSGoogle Scholar
  82. 82.
    A. Mukhopadhyay, J. Zhao, S.C. Bae, S. Granick, Rev. Sci. Instrum. 74, 3067–3072 (2003)ADSGoogle Scholar
  83. 83.
    S.C. Bae, J.S. Wong, M. Kim, S. Jiang, L. Hong, S. Granick, Philos. Trans. R. Soc., A 366, 1443–154 (2008)Google Scholar
  84. 84.
    S.C. Bae, H. Lee, Z. Lin, S. Granick, Langmuir 21, 5685–5688 (2005)Google Scholar
  85. 85.
    S.C. Bae, Z. Lin, S. Granick, Macromolecules 38, 9275–9279 (2005)ADSGoogle Scholar
  86. 86.
    S. Berg, M. Ruths, D. Johannsmann, Phys. Rev. E 65, 026119 (2002)ADSGoogle Scholar
  87. 87.
    P. Richetti, C. Drummond, J. Israelachvili, M. In, R. Zana, Europhys. Lett. 55, 653–659 (2001)ADSGoogle Scholar
  88. 88.
    M. Ruths, N.A. Alcantar, J.N. Israelachvili, J. Phys. Chem. B 107, 11149–11157 (2003)Google Scholar
  89. 89.
    C.A. Helm, J.N. Israelachvili, P.M. McGuiggan, Biochemistry 31, 1794–805 (1992)Google Scholar
  90. 90.
    S. Yamada, J. Israelachvili, J. Phys. Chem. B 102, 234–244 (1998)Google Scholar
  91. 91.
    G.G. Warr, Curr. Opin. Colloid Interface Sci. 5, 88–94 (2000)Google Scholar
  92. 92.
    J.L. Parker, D.L. Cho, P.M. Claesson, J. Phys. Chem. 93, 6121–6125 (1989)Google Scholar
  93. 93.
    J.L. Parker, P.M. Claesson, D.L. Cho, A. Ahlberg, J. Tidblad, E. Blomberg, J. Colloid Interface Sci. 134, 449–458 (1990)Google Scholar
  94. 94.
    C.R. Kessel, S. Granick, Langmuir 7, 532–538 (1991)Google Scholar
  95. 95.
    J.M. Levins, T.K. Vanderlick, Langmuir 10, 2389–2394 (1994)Google Scholar
  96. 96.
    M.T. Clarkson, J. Phys. D: Appl. Phys. 22, 475–482 (1989)ADSGoogle Scholar
  97. 97.
    J.L. Parker, H.K. Christenson, J. Chem. Phys. 88, 8013–8014 (1988)ADSGoogle Scholar
  98. 98.
    C.P. Smith, M. Maeda, L. Atanasoska, H.S. White, D.J. McClure, J. Phys. Chem. 92, 199–205 (1988)Google Scholar
  99. 99.
    N.A. Alcantar, C. Park, J.-M. Pan, J.N. Israelachvili, Acta Mater. 51, 31–47 (2003)Google Scholar
  100. 100.
    G. Vigil, Z. Xu, S. Steinberg, J. Israelachvili, J. Colloid Interface Sci. 165, 367–385 (1994)Google Scholar
  101. 101.
    R.G. Horn, D.R. Clarke, M.T. Clarkson, J. Mater. Res. 3, 413–416 (1988)ADSGoogle Scholar
  102. 102.
    A. Berman, S. Steinberg, S. Campbell, A. Ulman, J. Israelachvili, Tribol. Lett. 4, 43–48 (1998)Google Scholar
  103. 103.
    P.M. McGuiggan, S.M. Hsu, W. Fong, D. Bogy, C.S. Bhatia, J. Tribol. 124, 239–244 (2002)Google Scholar
  104. 104.
    S.J. Hirz, A.M. Homola, G. Hadziioannou, C.W. Frank, Langmuir 8, 328–333 (1992)Google Scholar
  105. 105.
    R.G. Horn, D.T. Smith, W. Haller, Chem. Phys. Lett. 162, 404–408 (1989)ADSGoogle Scholar
  106. 106.
    Y. Golan, N.A. Alcantar, T.L. Kuhl, J. Israelachvili, Langmuir 16, 6955–6960 (2000)Google Scholar
  107. 107.
    L. Chai, J. Klein, Langmuir 23, 7777–7783 (2007)Google Scholar
  108. 108.
    L. Chai, J. Klein, Langmuir 25, 11533–11540 (2009)Google Scholar
  109. 109.
    M. Valtiner, X. Banquy, K. Kristiansen, G.W. Greene, J.N. Israelachvili, Langmuir 28, 13080–13093 (2012)Google Scholar
  110. 110.
    T. Kamijo, M. Kasuya, M. Mizukami, K. Kurihara, Chem. Lett. 40, 674–675 (2011)Google Scholar
  111. 111.
    C. Drummond, J. Elezgaray, P. Richetti, Europhys. Lett. 58, 503–509 (2002)ADSGoogle Scholar
  112. 112.
    A. Schallamach, Wear 17, 301–312 (1971)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centre de Recherche Paul PascalCNRS-Université Bordeaux 1PessacFrance

Personalised recommendations