Skip to main content

Tribological Aspects of In Situ Manipulation of Nanostructures Inside Scanning Electron Microscope

  • Chapter
  • First Online:
Fundamentals of Friction and Wear on the Nanoscale

Part of the book series: NanoScience and Technology ((NANO))

  • 3226 Accesses

Abstract

This chapter is dedicated to manipulation of nanostructures inside a scanning electron (SEM) microscope employed for real-time tribological measurements. Different approaches to force registration and calculation of static and kinetic friction are described. Application of the considered methodology to Au and Ag nanoparticles, as well as ZnO and CuO nanowires, is demonstrated. Advantages and limitations of the methodology in comparison to traditional AFM-based manipulation techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Mo, K.T. Turner, I. Szlufarska, Nature 457, 1116–1119 (2009). doi:10.1038/nature07748

    Article  ADS  Google Scholar 

  2. L. Liu, P. Peng, A. Hu, G. Zou, W.W. Duley et al., Appl. Phys. Lett. 102, 073107 (2013). doi:10.1063/1.4790189

    Article  ADS  Google Scholar 

  3. L. Wang, H.-Y. Park, S. Lim, M. Schadt, D. Mott, J. Luo, X. Wang, C.-J. Zhong, J. Mater. Chem. 18, 2629–2635 (2008)

    Article  Google Scholar 

  4. L. Dorogin, S. Vlassov, A. Kolesnikova, I. Kink, R. Lõhmus, A. Romanov, Crystal mismatched layers in pentagonal nanorods and nanoparticles. Physica Status Solidi B-Basic. Solid State Physics 247(2), 288–298 (2010)

    Article  Google Scholar 

  5. D. Hidayat, A. Purwanto, W.-N. Wangc, K. Okuyama, Mater. Res. Bull. 45, 165–173 (2010)

    Article  Google Scholar 

  6. D. Seo, C.I. Yoo, I.S. Chung, S.M. Park, S. Ryu, H. Song, J. Phys. Chem. C112, 2469–2475 (2008)

    Google Scholar 

  7. C.-L. Chiang, M.-B. Hsu, L.-B. Lai, J. Solid State Chem. 177, 3891–3895 (2004)

    Article  ADS  Google Scholar 

  8. C. Cao, S. Park, S. Sim, J. Colloid Interface Sci. 322, 152–157 (2008)

    Article  Google Scholar 

  9. L.M. Dorogin, B. Polyakov, A. Petruhins, S. Vlassov, R. Lõhmus, I. Kink, A.E. Romanov, J. Mater. Res. 27, 580–585 (2012)

    Article  ADS  Google Scholar 

  10. BRR—A SEM-AFM integration for Zeiss scanning electron microscope. DME Danish Micro Engineering A/S. http://www.dme-spm.dk/

  11. Combined AFM FIB and AFM SEM. Nanonics Imaging Ltd. http://www.nanonics.co.il/products/nsom-spm-systems/combined-afm-fib-and-afm-sem.html

  12. http://www.smaract.de/

  13. D. Erts, A. Lõhmus, R. Lõhmus, H. Olin, A.V. Pokropivny, L. Ryen, K. Svensson, Appl. Surf. Sci. 188(3–4), 460–466 (2002)

    Article  ADS  Google Scholar 

  14. Attocube systems AG. http://www.attocube.com/

  15. Fundamentals of Piezoelectric Actuators, PI Ceramic GmbH. http://www.piceramic.com/

  16. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications (Cambridge University Press, Cambridge, 1994)

    Google Scholar 

  17. M. Troyon, H.N. Lei, Z. Wang, G. Shang, A scanning force microscope combined with a scanning electron microscope for multidimensional data analysis. Scan. Microsc. 12(1), 139–148 (1998)

    Google Scholar 

  18. K. Fukushima, D. Saya, H. Kawakatsu, Development of a Versatile atomic force microscope within a scanning electron microscope. Jp. J. Appl. Phys. 39, 3747–3749 (2000)

    Article  ADS  Google Scholar 

  19. I. Joachimsthaler, R. Heiderhoff, L.J. Balk, A universal scanningprobe-microscope-based hybrid system. Meas. Sci. Technol. 14(1), 87–96 (2003)

    Google Scholar 

  20. U. Mick, V. Eichhorn, T. Wortmann, C. Diederichs, S. Fatikow, Combined Nanorobotic AFM/SEM System as Novel Toolbox for Automated Hybrid Analysis and Manipulation of Nanoscale Objects. 2010 IEEE International Conference on Robotics and Automation

    Google Scholar 

  21. U. Stahl, C.W. Yuan, A.L. Lozanne, M. Tortonese, Atomic force microscope using piezoresistive cantilevers and combined with a scanning electron microscope. Appl. Phys. Lett. 65(28), 2878–2880 (1994)

    Article  ADS  Google Scholar 

  22. M. Barbic, Sens. Actuators, A 136, 564–566 (2007)

    Article  Google Scholar 

  23. S. Fain Jr, K. Barry, M. Bush, B. Pittenger, R. Louie, Appl. Phys. Lett. 76, 930 (2000)

    Article  ADS  Google Scholar 

  24. C. Su, L. Huang, K. Kjoller, Ultramicroscopy 100, 233–239 (2004)

    Article  Google Scholar 

  25. H. Hidaa, M. Shikida, K. Fukuzawa, S. Murakami, Ke. Sato, K. Asaumi, Y. Iriye, Ka. Sato, Sens. Actuators, A 148, 311–318 (2008)

    Google Scholar 

  26. V. ThanhTung, S.A. Chizhik, T. XuanHoai, N. TrongTinh, V.V. Chikunov, in Tuning Fork Scanning Probe Microscopes, ed. by V. Nalladega, Applications for the Nano-Analysis of the Material Surface and Local Physico-Mechanical Properties, Scanning Probe Microscopy-Physical Property Characterization at Nanoscale. ISBN: 978-953-51-0576-3, InTech (2012)

    Google Scholar 

  27. S. Kerfriden, A. Nahlé, S. Campbell, F. Walsh, J. Smith, Electrochimica Acta 43(12–13), 1939–1944 (1998)

    Article  Google Scholar 

  28. S. Vlassov, B. Polyakov, L.M. Dorogin, A. Lohmus, A.E. Romanov, I. Kink, E. Gnecco, R. Lohmus, Solid State Commun. 151, 688 (2011)

    Article  ADS  Google Scholar 

  29. AdvancedTEC \({}^{\text{ TM }}\) Cont. http://www.nanosensors.com/

  30. Akiyama-Probe (A-Probe) guide. NANOSENSORS, NanoWorld AG. http://www.akiyamaprobe.com

  31. J.L. Arlett, J.R. Maloney, B. Gudlewski, M. Muluneh, M.L. Roukes, Nano Lett. 6, 1000 (2006)

    Article  ADS  Google Scholar 

  32. M. Li, H.X. Tang, M.L. Roukes, Nat. Nanotechnol. 2, 114 (2007)

    Article  ADS  Google Scholar 

  33. C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch, P. Will, Nanotechnology 9, 360 (1998)

    Article  ADS  Google Scholar 

  34. D. Dietzel, M. Feldmann, H. Fuchs, U.D. Schwarz, A. Schirmeisen, Appl. Phys. Lett. 95(5) (2009)

    Google Scholar 

  35. K. Mougin, E. Gnecco, A. Rao, M. Cuberes, S. Jayaraman, E. McFarland, H. Haidara, E. Meyer, Langmuir 24, 1577 (2008)

    Article  Google Scholar 

  36. S. Kim, D.C. Ratchford, X. Li, ACS Nano 3, 2989–2994 (2009)

    Article  Google Scholar 

  37. A.M. Homola, J.N. Israelachvili, M.L. Gee, P.M. McGuiggan, J. Tribol. 111, 675 (1989)

    Article  Google Scholar 

  38. R.W. Carpick, M. Salmeron, Chem. Rev. 97, 1163–1194 (1997)

    Article  Google Scholar 

  39. A.H. Cottrell, Dislocations and Plastic Flow in Crystals (Oxford University Press, Oxford, UK, 1953)

    MATH  Google Scholar 

  40. J.P. Hirth, J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968). 780 p

    Google Scholar 

  41. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. B. Soc. Lond. A. 324, 301–313 (1971)

    Article  ADS  Google Scholar 

  42. B.V. Derjaguin, V.M. Müller, Y.P. Toporov, J. Colloid Interface Sci. 53, 314 (1975)

    Article  Google Scholar 

  43. D. Tabor, J. Colloid Interface Sci. 58, 2–13 (1977)

    Article  Google Scholar 

  44. D. Dietzel, C. Ritter, T. Monninghoff, H. Fuchs, A. Schirmeisen, U.D. Schwarz, Phys. Rev. Lett. 101, 125505 (2008)

    Article  ADS  Google Scholar 

  45. L. Kondic, J.A. Diez, Phys. Rev. E79, 026302 (2009)

    ADS  Google Scholar 

  46. D.R. Smith, F.R. Fickett, Low-temperature properties of silver. J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995)

    Article  Google Scholar 

  47. M. Manoharan, A. Desai, G. Neely, M. Haque, J. Nanomater. Article ID 849745 (2008)

    Google Scholar 

  48. J. Hsu, S. Chang, Surface adhesion between hexagonal boron nitride nanotubes and silicon based on lateral force microscopy. Appl. Surf. Sci. 256, 1769–1773 (2010)

    Article  ADS  Google Scholar 

  49. M. Falvo, J. Steele, I.I. Taylor, R.R. Superfine, Evidence of commensurate contact and rolling motion: AFM manipulation studies of carbon nanotubes on HOPG. Tribol. Lett. 9, 73–76 (2000)

    Article  Google Scholar 

  50. R. Mohan, Y. Liang, Cutting Edge Nanotechnology (InTech, 2010), Chap. 10

    Google Scholar 

  51. M.A. Schubert, S. Senz, M. Alexe, D. Hesse, U. Gösele, Appl. Phys. Lett. 92, 122904 (2008)

    Article  ADS  Google Scholar 

  52. S. Timoshenko, J. N. Goodier, Theory of Elasticity, 2nd. ed. (McGraw-Hill Book Company, 1951), pp. 316–342

    Google Scholar 

  53. B. Polyakov, L. Dorogin, S. Vlassov, I. Kink, A. Lohmus, A. Romanov, R. Lohmus, Solid State Commun. 151, 1244–1247 (2011)

    Article  ADS  Google Scholar 

  54. B. Polyakov, L. Dorogin, S. Vlassov, A.E. Romanov, R. Lohmus, I. Kink, Micron 43, 1140–1146 (2012)

    Article  Google Scholar 

  55. B. Polyakov, L.M. Dorogin, A. Lõhmus, A.E. Romanov, R. Lõhmus, Appl. Surf. Sci. 258, 3227 (2012)

    Article  ADS  Google Scholar 

  56. L. Landau, E. Lifshitz, Theory of Elasticity, 3rd edn. (Butterworth-Heinemann, Oxford, 1986), pp. 70–76

    Google Scholar 

  57. B. Polyakov, L.M. Dorogin, S. Vlassov, M. Antsov, P. Kulis, I. Kink, R. Lohmus, In situ measurements of ultimate bending strength of CuO and ZnO nanowires. Eur. Phys. J. B 85, 366 (2012)

    Google Scholar 

  58. E.C.C.M. Silva, L. Tong, S. Yip, K.J. Van Vliet, Small 2, 239–243 (2006)

    Article  Google Scholar 

  59. B. Persson, Sliding Friction, 2nd edn. (Springer, Berlin Heidelberg New York, 2000)

    Google Scholar 

  60. N. Tambe, B. Bhushan, Nanotechnology 15, 1561 (2004)

    Article  ADS  Google Scholar 

  61. F. Delrio, M. de Boer, J. Knapp, E. Davidreed, P. Clews, M. Dunn, Nat. Mater. 4, 629 (2005)

    Article  ADS  Google Scholar 

  62. B. Polyakov et al., Appl. Surf. Sci. 258, 3227 (2012)

    Article  ADS  Google Scholar 

  63. D. Dietzel, M. Feldmann, H. Fuchs, U. Schwarz, A. Schirmeisen, Transition from static to kinetic friction of metallic nanoparticles. Appl. Phys. Lett. 95, 053104 (2009)

    Article  ADS  Google Scholar 

  64. M. Bordag, A. Ribayrol, G. Conache, L.E. Frcberg, S. Gray, L. Samuelson, L. Montelius, H. Pettersson, Small 3, 1398–1401 (2007)

    Article  Google Scholar 

  65. M. Strus, R. Lahiji, P. Ares, V. Lopez, A. Raman, R. Reifenberger, Nanotechnology 20, 385709 (2009)

    Google Scholar 

  66. G. Stan, S. Krylyuk, A.V. Davydov, R.F. Cook, Bending manipulation and measurements of fracture strength of silicon and oxidized silicon nanowires by atomic force microscopy. J. Mater. Res. 27 (2012)

    Google Scholar 

  67. L.M. Dorogin, S. Vlassov, B. Polyakov, M. Antsov, R. Lõhmus, I. Kink, A.E. Romanov, Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys. Status Solidi B, 1–13 (2012)

    Google Scholar 

  68. W.H. Qi, Phys. B: Condens. Mater 368(1–4), 46–50 (2005)

    Article  ADS  Google Scholar 

  69. G. Conache, A. Ribayrol, L.E. Froberg, M.T. Borgstrom, L. Samuelson, L. Montelius, H. Pettersson, S.M. Gray, Phys. Rev. B 82, 035403 (2010). doi:10.1103/PhysRevB.82.035403

    Article  ADS  Google Scholar 

  70. D. Teweldebrhan, A.A. Balandin, Appl. Phys. Lett. 94, 013101 (2009)

    Article  ADS  Google Scholar 

  71. S. Zaitsev, O. Shtempluck, E. Buks, Sens. Actuators, A: Phys. 179, 237–241 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Polyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Polyakov, B., Dorogin, L., Vlassov, S., Kink, I., Lõhmus, R. (2015). Tribological Aspects of In Situ Manipulation of Nanostructures Inside Scanning Electron Microscope. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear on the Nanoscale. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10560-4_18

Download citation

Publish with us

Policies and ethics