Advertisement

Effect of Capillary Condensation on Nanoscale Friction

  • Rosario Capozza
  • Itay Barel
  • Michael Urbakh
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

While formation of capillary bridges significantly contributes to the adhesion and friction at micro- and nanoscales, many key aspects of dynamics of capillary condensation and its effect on friction forces are still not well understood. Here, by analytical model and numerical simulations, we address the origin of reduction of friction force with velocity and increase of friction with temperature, which have been experimentally observed under humid ambient conditions. We demonstrate that adding a low amplitude oscillatory component to the pulling force, when applied at the right frequency, can significantly suppress condensation of capillary bridges and thereby reduce friction. The results obtained show that frictional measurements performed in this mode can provide significant information on the mechanism of frictional aging.

Keywords

Capillarity Condensation Nonlinear phenomena Fracture 

Notes

Acknowledgments

We grateful to R. W. Carpick, A.E. Filippov, C. Greiner, P.-E. Mazeran and O. Noel for helpful discussions. R.C. acknowledges support from the Swiss National Science Foundation SINERGIA Project CRSII2 136287\(\backslash \)1. The work was supported by DIP (German-Israeli Project Cooperation Program) and the Israel Science Foundation (1109/09).

References

  1. 1.
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, The nonlinear nature of friction. Nature 430, 525–528 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    V. Bormuth, V. Varga, J. Howard, E. Schaffer, Protein Friction Limits Diffusive and Directed Movements of Kinesin Motors on Microtubules. Science 325, 870–873 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    C.H. Scholz, Earthquakes and friction laws. Nature 391, 37–42 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    R. Budakian, S.J. Putterman, Correlation between charge transfer and stick-slip friction at a metalinsulator interface. Phys. Rev. Lett. 85, 1000 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    E. Gerde, M. Marder, Friction and fracture. Nature (London) 413, 285 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    A.E. Filippov, J. Klafter, M. Urbakh, Friction through dynamical formation and rupture of molecular bonds. Phys. Rev. Lett. 92, 135503 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Rubinstein, G. Cohen, J. Fineberg, Detachment fronts and the onset of dynamic friction. Nature 430, 1005 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    A. Vanossi, N. Manini, M. Urbakh, S. Zapperi, E. Tosatti, Colloquium: modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Mo, K.T. Turner, I. Szlufarska, Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    B. Gotsmann, M.A. Lantz, Quantized thermal transport across contacts of rough surfaces. Nature Mater. 12, 59–65 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 1998)CrossRefGoogle Scholar
  12. 12.
    O.M. Braun, M. Peyrard, Modeling friction on a mesoscale: master equation for the earthquakelike model. Phys. Rev. Lett. 100, 125501 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    O.M. Braun, I. Barel, M. Urbakh, Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    I. Barel, M. Urbakh, L. Jansen, A. Schirmeisen, Multibond dynamics of nanoscale friction: the role of temperature. Phys. Rev. Lett. 104, 066104 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Liu, I. Szlufarska, Chemical origins of frictional aging. Phys. Rev. Lett. 109, 186102 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    R. Capozza, M. Urbakh, Static friction and the dynamics of interfacial rupture. Phys. Rev. B 86, 085430 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T.C. Halsey, A.J. Levine, How sandcastles fall. Phys. Rev. Lett. 80, 3141 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    S.N. Gorb, Attachment Devices of Insect Cuticle (Kluwer Academic Publishers, Dordrecht, 2001)Google Scholar
  19. 19.
    B. Bhushan, Handbook of Nanotribology (Springer, New York, 2007)Google Scholar
  20. 20.
    L. Bocquet, E. Charlaix, S. Ciliberto, J. Crassous, Moisture-induced ageing in Granular media and the kinetics of capillary condensation. Nature (London) 396, 735 (1998)Google Scholar
  21. 21.
    E. Riedo, F. Le’vy, H. Brune, Kinetics of capillary condensation in nanoscopic sliding friction. Phys. Rev. Lett. 88, 185505 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    R. Szoszkiewicz, E. Riedo, Nucleation time of nanoscalewater bridges. Phys. Rev. Lett. 95, 135502 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    C. Greiner, J.R. Felts, Z. Dai, W.P. King, R.W. Carpick, Local nanoscale heating modulates single-asperity friction. Nano Lett. 10, 4640 (2010)Google Scholar
  24. 24.
    O. Noel, P.-E. Mazeran, H. Nasrallah, Sliding velocity dependence of adhesion in a nanometer-sized contact. Phys. Rev. Lett. 108, 015503 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    L. Zitzler, S. Herminghaus, F. Mugele, Capillary forces in tapping mode atomic force microscopy. Phys. Rev. B 66, 155436 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Sang, M. Dube, M. Grant, Thermal effects on atomic friction. Phys. Rev. Lett. 87, 17430 (2001)CrossRefGoogle Scholar
  27. 27.
    O.K. Dudko, A.E. Filippov, J. Klafter, M. Urbakh, Dynamic force spectroscopy: a Fokker\(-\)Planck approach. Chem. Phys. Lett. 352, 499 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    I. Szlufarska, M. Chandross, R.W. Carpick, Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, H.J. Guntherodt, Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    L. Jansen, H. Holscher, H. Fuchs, A. Schirmeisen, Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104, 256101 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    M. Heuberger, C. Drummond, J.N. Israelachvili, Coupling of normal and transverse motion during frictional sliding. J. Phys. Chem. B 102, 5038 (1998)CrossRefGoogle Scholar
  32. 32.
    A. Socoliuc et al., Atomic-scale control of friction by actuation of nanometer- sized contacts. Science 313, 207 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    S. Jeon, T. Thundat, Y. Braiman, Effect of normal vibration on friction in the atomic force microscopy experiment. Appl. Phys. Lett. 88, 214102 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    A. Cochard, L. Bureau, T. Baumberger, Stabilization of frictional sliding by normal load modulation: a bifurcation analysis. Trans. ASME 70, 220 (2003)CrossRefzbMATHGoogle Scholar
  35. 35.
    V.L. Popov, J. Starcevic, A.E. Filippov, Influence of ultrasonic in-plane oscillations on static and sliding friction and intrinsic length scale of dry fiction. Tribol. Lett. 39, 25 (2010)CrossRefGoogle Scholar
  36. 36.
    R. Capozza, S.M. Rubinstein, I. Barel, M. Urbakh, J. Fineberg, Stabilizing stick-slip friction. Phys. Rev. Lett. 107, 024301 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    M.G. Rozman, M. Urbakh, J. Klafter, Controlling chaotic frictional forces. Phys. Rev. E 57, 7340 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Tshiprut, A.E. Filippov, M. Urbakh, Tuning diffusion and friction in microscopic contacts by mechanical excitations. Phys. Rev. Lett. 95, 016101 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    J.P. Gao, W.D. Luedtke, U. Landman, Friction control in thin-film lubrication. J. Phys. Chem. B 102, 5033–5037 (1998)CrossRefGoogle Scholar
  40. 40.
    R. Capozza, A. Vanossi, A. Vezzani, S. Zapperi, Suppression of friction by mechanical vibrations. Phys. Rev. Lett. 103, 085502 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Q. Li, T.E. Tullis, D. Golldsby, R.W. Carpick, On the origins of rate and state friction: frictional ageing from interfacial bonding. Nature (London) 480, 233 (2011)Google Scholar
  42. 42.
    I. Barel, A.E. Filippov, M. Urbakh, Formation and rupture of capillary bridges in atomic scale friction. J. Chem. Phys. 137, 164706 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    H. Choe, M.-H. Hong, Y. Seo, K. Lee, G. Kim, Y. Cho, J. Ihm, W. Jhe, Formation, manipulation, and elasticity measurement of a nanometric column of water molecules. Phys. Rev. Lett. 95, 187801 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    M. He, A.S. Blum, D.E. Aston, C. Buenviaje, R.M. Overney, R. Luginbuhl, Critical phenomena of water bridges in nanoasperity contacts. J. Chem. Phys. 114, 1355 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    J. Crassous, M. Ciccotti, E. Charlaix, Capillary, force between wetted nanometric contacts and its application to atomic force microscopy. Langmuir 27, 3468 (2011)Google Scholar
  46. 46.
    H.-J. Butt, Capillary forces: influence of roughness and heterogeneity. Langmuir 24, 4715 (2008)CrossRefGoogle Scholar
  47. 47.
    I. Barel, M. Urbakh, L. Jansen, A. Schirmeisen, Temperature dependence of friction at the nanoscale: when the unexpected turns normal. Trib. Lett. 39, 311 (2010)CrossRefGoogle Scholar
  48. 48.
    I. Barel, M. Urbakh, L. Jansen, A. Schirmeisen, Unexpected temperature and velocity dependencies of atomic-scale stick-slip friction. Phys. Rev. B 84, 115417 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    J.H. Dieterich, Modeling of rock friction: 1. experimental results and constitutive equations. J. Geophys. Res. 84, 2161 (1979)ADSCrossRefGoogle Scholar
  50. 50.
    V.L. Popov, Contact Mechanics and Friction: Physical Principles and Applications (Springer, Berlin, 2010)CrossRefGoogle Scholar
  51. 51.
    K.M. Frye, C. Marone, Effect of humidity on granular friction at room temperature. J. Geophys. 107, 2309 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    R. Capozza, I. Barel, M. Urbakh, Probing and tuning frictional aging at the Nanoscale. Sci. Rep. 3, 1896 (2013)ADSCrossRefGoogle Scholar
  53. 53.
    X.H. Chen, A.P. Dempster, J.S. Liu, Weighted finite population sampling to maximize entropy. Biometrika 81(3), 457 (1994)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.International School for Advanced Studies (SISSA)TriesteItaly
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta BarbaraUSA
  3. 3.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations