Advertisement

Contact Mechanics, Friction and Adhesion with Application to Quasicrystals

  • Bo Persson
  • Giuseppe Carbone
  • Vladimir N. Samoilov
  • Ion M. Sivebaek
  • Ugo Tartaglino
  • Aleksandr I. Volokitin
  • Chunyan Yang
Chapter
Part of the NanoScience and Technology book series (NANO)

Abstract

We discuss the origin of friction and adhesion between hard solids such as quasicrystals. We emphasize the fundamental role of surface roughness in many contact mechanics problems, in particular for friction and adhesion between solid bodies. The most important property of rough surfaces is the surface roughness power spectrum \(C(q)\). We present surface roughness power spectra of many surfaces of practical importance, obtained from the surface height profile measured using optical methods and the Atomic Force Microscope. We show how the power spectrum determines the contact area between two solids. We also present applications to contact mechanics and adhesion for rough surfaces, where the power spectrum enters as an important input.

Keywords

Real Contact Wafer Bonding Capillary Bridge Rubber Friction Nominal Contact Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    B.N.J. Persson, O. Albohr, F. Mancosu, V. Peveri, V.N. Samoilov, I.M. Sivebaek, Wear 254, 835 (2003)CrossRefGoogle Scholar
  3. 3.
    E. Riedo, H. Brune, Applied Physics Letters 83, 1986 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Dubois, S.S. Kang, J. von Stebut, J. Mater. Sci. Lett. 10, 537 (1991)Google Scholar
  5. 5.
    J.M. Dubois, P. Brunet, W. Costin, A. Merstallinger, J. Non-Cryst. Solids 334–335, 475 (2004)Google Scholar
  6. 6.
    J.Y. Park, D.F. Ogletree, M. Salmeron, C.J. Jenks, P.A. Thiel, Trib. Lett. 17, 629 (2004)Google Scholar
  7. 7.
    J.S. Ko, A.J. Gellman, T.A. Lograsso, C.J. Jenks, P.A. Thiel, Surface Science 423, 243 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    C.F. McFadden, A.J. Gellman, Trib. Lett. 1, 201 (1995)Google Scholar
  9. 9.
    Y.-P. Zhao, L.S. Wang, T.X. Yu, J. Adhesion Sci. Technol. 17, 519 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    C.H. Mastrangelo, Trib. Lett. 3, 223 (1997)CrossRefGoogle Scholar
  11. 11.
    F. Bottiglione, G. Carbone, Langmuir 29, 599 (2013)Google Scholar
  12. 12.
    C. Gui, M. Elwenspoek, N. Tas, J.G.E. Gardeniers, J. Appl. Phys. 85, 7448 (1999)Google Scholar
  13. 13.
    See, e.g., A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)Google Scholar
  14. 14.
    See, e.g., J. Krug, Advances in Physics 46, 139 (1997)Google Scholar
  15. 15.
    J. Feder, Fractals (Plenum Press, New York, 1988)Google Scholar
  16. 16.
    M.V. Berry, Z.V. Lewis, Proc. R. Soc. London A 370, 459 (1980)Google Scholar
  17. 17.
    J. Krim, G. Palasantzas, Int. J. of Modern Phys. B 9, 599 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    P.R. Nayak, ASME J. Lubrication Technology 93, 398 (1971)CrossRefGoogle Scholar
  19. 19.
    E. Bouchaud, J. Phys.: Condens. Matter 9, 4319 (1997)ADSGoogle Scholar
  20. 20.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications, Sec. edn. (Springer, Heidelberg, 2000)Google Scholar
  21. 21.
    H. Hertz, J. Reine Angew. Math. 92, 156 (1882)zbMATHGoogle Scholar
  22. 22.
    J.F. Archard, Proc. R. Soc. A 243, 190 (1957)Google Scholar
  23. 23.
    J.A. Greenwood, in Fundamentals of Friction, Macroscopic and Microscopic Processes, Ed. by I.L. Singer and H.M. Pollack (Kluver, Dordrecht, 1992)Google Scholar
  24. 24.
    J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. A 295, 300 (1966)Google Scholar
  25. 25.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985)Google Scholar
  26. 26.
    A.W. Bush, R.D. Gibson, T.R. Thomas, Wear 35, 87 (1975)Google Scholar
  27. 27.
    A.W. Bush, R.D. Gibson, G.P. Keogh, Mech. Res. Commun. 3, 169 (1976)Google Scholar
  28. 28.
    B.N.J. Persson, Phys. Rev. Lett. 87, 1161 (2001)Google Scholar
  29. 29.
    B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)Google Scholar
  30. 30.
    We define the apparent contact area \(A(\lambda )\) on the length scale \(\lambda \) to be the area of real contact if the surface would be smooth on all length scales shorter than \(\lambda \). That is, considering the Fourier transform of the surface profile, all the components whose wave vector is larger that \(2\pi /\lambda \) have to be set to 0, and the contact area with this new surface is by definition \(A(\lambda )\) Google Scholar
  31. 31.
    B.N.J. Persson, F. Bucher, B. Chiaia, Phys. Rev. B 65, 184106 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002)Google Scholar
  33. 33.
    B.N.J. Persson, Phys. Rev. Lett. 89, 245502 (2002)Google Scholar
  34. 34.
    S. Hyun, L. Pei, J.-F. Molinari, M.O. Robbins, Phys. Rev. E 70, 026117 (2004)Google Scholar
  35. 35.
    C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006)Google Scholar
  36. 36.
    M. Borri-Brunetto, B. Chiaia, M. Ciavarella, Comput. Methods Appl. Mech. Engrg. 190, 6053 (2001)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    K.N.G. Fuller, D. Tabor, Proc. R. Soc. London A 345, 327 (1975)ADSCrossRefGoogle Scholar
  38. 38.
    K. Kendall, Molecular Adhesion and it Applications (Kluwer, New York, 2001); D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer, Berlin, 1999)Google Scholar
  39. 39.
    K. Kendall, J. Phys. D: Appl. Phys. 4, 1186 (1971); 6, 1782 (1973); 8, 115 (1975). See also the beautiful review article of K. Kendall, Contemp. Phys. 21, 277 (1980)Google Scholar
  40. 40.
    G.A.D. Briggs, B.J. Briscoe, J. Phys. D: Appl. Phys. 10, 2453 (1977)ADSCrossRefGoogle Scholar
  41. 41.
    K.N.G. Fuller, A.D. Roberts, J. Phys. D: Appl. Phys. 14, 221 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    S. Zilberman, B.N.J. Persson, J. Chem. Phys. 118, 6473 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    V.N. Samoilov, I.M. Sivebaek, B.N.J. Persson, J. Chem. Phys. 121, 9639 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1995)Google Scholar
  45. 45.
    K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. Lond. A 324, 301 (1971)Google Scholar
  46. 46.
    G. Sperling, PhD thesis, Karlsruhe Technical University (1964)Google Scholar
  47. 47.
    N.P. Padture, M. Gell, E.H. Jordan, Science 296, 280 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    K.T. Turner, S.M. Spearing, J. Appl. Phys. 92, 7658 (2002)Google Scholar
  49. 49.
    L.D. Piveteau, B. Gasser, L. Schlapbach, Biomaterials 21, 2193 (2000)CrossRefGoogle Scholar
  50. 50.
    S. Gorb, B.N.J. Persson, J. Chem. Phys. 119, 11437 (2003)Google Scholar
  51. 51.
    B.N.J. Persson, J. Chem. Phys. 118, 7614 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, S.Yu. Shapoval, Nature Materials 2, 461 (2003)Google Scholar
  53. 53.
    A. Peressadko, S.N. Gorb, Journal of Adhesion 80, 247 (2004)CrossRefGoogle Scholar
  54. 54.
    K.L. Johnson, Tribology International 31, 413 (1998); L. Zhang, Y.-P. Zhao, J. Adhesion Sci. Technol. 18, 715 (2004)Google Scholar
  55. 55.
    B.N.J. Persson, Wear 254, 832 (2003)CrossRefGoogle Scholar
  56. 56.
    H.J. Gao, H.M. Yao, Proceedings of the National Academy of Sciences of the United States of America 101, 7851 (2004)ADSCrossRefGoogle Scholar
  57. 57.
    B.N.J. Persson, F. Mugele, J. Phys.: Condens. Matter 16, R295 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bo Persson
    • 1
  • Giuseppe Carbone
    • 2
  • Vladimir N. Samoilov
    • 3
  • Ion M. Sivebaek
    • 4
  • Ugo Tartaglino
    • 5
  • Aleksandr I. Volokitin
    • 6
  • Chunyan Yang
    • 3
  1. 1.Peter Grünberg InstitutForschungszentrum JülichJülichGermany
  2. 2.CEMeC Politecnico di BariBariItaly
  3. 3.IFF, FZ-JülichJülichGermany
  4. 4.Department of Mechanical EngineeringTechnical University of DenmarkLyngbyDenmark
  5. 5.Pirelli TiresMilanItaly
  6. 6.Samara State Technical UniversitySamaraRussia

Personalised recommendations