Skip to main content

Drug Interaction Potential of Antimalarial Drugs Based on Known Metabolic Properties of Antimalarials

  • Chapter
  • First Online:
Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials

Abstract

In this chapter, we describe the potential for drug interactions for various antimalarial drugs based on their known metabolic properties. These antimalarials include the following: chloroquine, amodiaquine, sulfadoxine and pyrimethamine, mefloquine, primaquine, atovaquone, proguanil, quinine, artemisinin, artesunate, artemether, and dihydroartemisin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bapiro TE, Egnell AC, Hasler JA et al (2001) Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450s. Drug Metab Dispos 29(1):30–35

    CAS  PubMed  Google Scholar 

  • Birkett DJ, Rees D, Andersson T et al (1994) In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br J Clin Pharmacol 37(5):413–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coller JK, Somogyi AA, Bochner F (1999) Comparison of (S)-mephenytoin and proguanil oxidation in vitro: contribution of several CYP isoforms. Br J Clin Pharmacol 48(2):158–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elsherbiny DA, Asimus SA, Karlsson MO et al (2008) A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens. J Pharmacokinet Pharmacodyn 35(2):203–217

    Article  CAS  PubMed  Google Scholar 

  • Fontaine F, Delescluse C, de Sousa G et al (1999) Cytochrome P450 1A1 induction by primaquine in human hepatocytes and HepG2 cells: absence of binding to the aryl hydrocarbon receptor. Biochem Pharmacol 57:255–262

    Article  CAS  PubMed  Google Scholar 

  • Fontaine F, de Sousa G, Burcham PC et al (2000) Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci 66(22):2193–2212

    Article  CAS  PubMed  Google Scholar 

  • Grace JM, Aguilar AJ, Trotman KM et al (1998) Metabolism of beta-arteether to dihydroqinghaosu by human liver microsomes and recombinant cytochrome P450. Drug Metab Dispos 26(4):313–317

    CAS  PubMed  Google Scholar 

  • Ilett KF, Ethell BT, Maggs JL et al (2002) Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 30(9):1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Pybus BS, Marcsisin SR et al (2014) An LC-MS based study of the metabolic profile of primaquine, an 8-aminoquinoline antiparasitic drug, with an in vitro primary human hepatocyte culture model. Eur J Drug Metab Pharmacokinet 39(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Kim KA, Park JY, Lee JS et al (2003) Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res 26(8):631–637

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Bjorkman A, Andersson TB, Ridderstrom M et al (2002) Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 300(2):399–407

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Bjorkman A, Andersson TB et al (2003) Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data. Eur J Clin Pharmacol 59:429–442

    Article  CAS  PubMed  Google Scholar 

  • Lu AH, Shu Y, Huang SL (2000) In vitro proguanil activation to cycloguanil is mediated by CYP2C19 and CYP3A4 in adult Chinese liver microsomes. Acta Pharmacol Sin 21(8):747–752

    CAS  PubMed  Google Scholar 

  • Masimirembwa CM, Hasler JA, Johansson I (1995) Inhibitory effects of antiparasitic drugs on cytochrome P450 2D6. Eur J Clin Pharmacol 48(1):35–38

    CAS  PubMed  Google Scholar 

  • Na-Bangchang K, Karbwang J, Back DJ (1992) Mefloquine metabolism by human liver microsomes. Effect of other antimalarial drugs. Biochem Pharmacol 43(9):1957–1961

    Article  Google Scholar 

  • Parikh S, Ouedraogo JB, Goldstein JA et al (2007) Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther 82(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Projean D, Baune B, Farinotti R et al (2003) In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos 31(6):748–754

    Article  CAS  PubMed  Google Scholar 

  • Rolan PE, Mercer AJ, Tate E et al (1997) Disposition of atovaquone in humans. Antimicrob Agents Chemother 41(6):1319–1321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simonsson US, Jansson B, Hai TN et al (2003) Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 74(1):32–43

    Article  CAS  PubMed  Google Scholar 

  • Svensson US, Ashton M (1999) Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin. Br J Clin Pharmacol 48(4):528–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Svensson US, Ashton M, Trinh NH et al (1998) Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 64(2):160–167

    Article  CAS  PubMed  Google Scholar 

  • Trapnell CB, Klecker RW, Jamis-Dow C et al (1998) Glucuronidation of 3′-azido-3′-deoxythymidine (zidovudine) by human liver microsomes: relevance to clinical pharmacokinetic interactions with atovaquone, fluconazole, methadone, and valproic acid. Antimicrob Agents Chemother 42(7):1592–1596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsky RL, Obach RS, Gaman EA et al (2005) Selective inhibition of human cytochrome P4502C8 by montelukast. Drug Metab Dispos 33(3):413–418

    Article  CAS  PubMed  Google Scholar 

  • Zhao XJ, Ishizaki T (1997) Metabolic interactions of selected antimalarial and non-antimalarial drugs with the major pathway (3-hydroxylation) of quinine in human liver microsomes. Br J Clin Pharmacol 44(5):505–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao XJ, Ishizaki T (1999) A further interaction study of quinine with clinically important drugs by human liver microsomes: determinations of inhibition constant (Ki) and type of inhibition. Eur J Drug Metab Pharmacokinet 24(3):272–278

    Article  CAS  PubMed  Google Scholar 

  • Zhao XJ, Yokoyama H, Chiba K et al (1996) Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther 279(3):1327–1334

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kiang, T.K.L., Wilby, K.J., Ensom, M.H.H. (2015). Drug Interaction Potential of Antimalarial Drugs Based on Known Metabolic Properties of Antimalarials. In: Clinical Pharmacokinetic and Pharmacodynamic Drug Interactions Associated with Antimalarials. Adis, Cham. https://doi.org/10.1007/978-3-319-10527-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10527-7_3

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-10526-0

  • Online ISBN: 978-3-319-10527-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics