Skip to main content

Optimal Estimations of Seiffert-Type Means By Some Special Gini Means

  • Conference paper
  • 964 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Abstract

Let us consider the logarithmic mean \(\mathcal{L,}\) the identric mean \(\mathcal{I,}\) the trigonometric means \(\mathcal{P}\) and \(\mathcal{T}\) defined by H. J. Seiffert, the hyperbolic mean \(\mathcal{N}\) defined by E. Neuman and J. Sándor, and the Gini mean \(\mathcal{J}\). The optimal estimations of these means by power means \(\mathcal{A}_{p}\) and also some of the optimal estimations by Lehmer means \(\mathcal{L}_{p}\) are known. We prove the rest of optimal estimations by Lehmer means and the optimal estimations by some other special Gini means \(\mathcal{S}_{p}\). In proving some of the results we used the computer algebra system Mathematica. We believe that some parts of the proofs couldn’t be done without the help of such a computer algebra system (at least by following our way of proving those results).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzer, H.: Best possible estimates for special mean values. Prirod.-Mat. Fak. Ser. Mat. 23, 331–346 (1993) (German)

    Google Scholar 

  2. Chu, Y.-M., Long, B.-Y.: Bounds of the Neuman-Sándor mean using power and identric mean. Abstract Appl. Anal. Article ID 832591, 6 pages (2013)

    Google Scholar 

  3. Costin, I., Toader, G.: Some optimal evaluations of the logarithmic means. Aut. Comput. Appl. Math. 22, 103–112 (2013)

    MathSciNet  Google Scholar 

  4. Costin, I., Toader, G.: A nice separation of some Seiffert-type means by power means. Int. J. Math. Math. Sc., Article ID 430692, 6 pages (2012)

    Google Scholar 

  5. Costin, I., Toader, G.: A separation of some Seiffert-type means by power means. Rev Anal. Num. Th. Approx. 41, 125–129 (2012)

    MATH  MathSciNet  Google Scholar 

  6. Costin, I., Toader, G.: Optimal evaluations of some Seiffert-type means by power means. Appl. Math. Comput. 219, 4745–4754 (2013)

    Article  MathSciNet  Google Scholar 

  7. Czinder, P., Páles, Z.: Some comparison inequalities for Gini and Stolarsky means. Math. Inequal. Appl. 9, 607–616 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Hästö, P.A.: Optimal inequalities between Seiffert’s means and power means. Math. Inequal. Appl. 7, 47–53 (2004)

    MATH  MathSciNet  Google Scholar 

  9. Karamata, J.: Sur quelques problèmes posés par Ramanujan. J. Indian Math. Soc. (N. S.) 24, 343–365 (1960)

    Google Scholar 

  10. Lin, T.P.: The power and the logarithmic mean. Amer. Math. Monthly 81, 879–883 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Neuman, E., Sándor, J.: On the Schwab-Borchardt mean. Math. Panon. 14, 253–266 (2003)

    MATH  Google Scholar 

  12. Neuman, E., Sándor, J.: Comparison inequalities for certain bivariate means. Appl. Anal. Discrete Math. 3, 46–51 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Páles, Z.: Inequalities for sums of powers. J. Math. Anal. Appl. 131, 271–281 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Pittenger, A.O.: Inequalities between arithmetic and logarithmic means. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715, 15–18 (1980)

    MathSciNet  Google Scholar 

  15. Sándor, J.: Trigonometric and hyperbolic inequalities arXiv:1105.0859v1 [math.CA], http://arxiv.org/abs/1105.0859

  16. Seiffert, H.-J.: Problem 887. Niew Arch. Wisk (Ser. 4) 11, 176–176 (1993)

    Google Scholar 

  17. Seiffert, H.: Aufgabe β16. Die Wurzel 29, 221–222 (1995)

    Google Scholar 

  18. Yang, Z.: Sharp bounds for the second Seiffert mean in terms of power means, http://arxiv.org/pdf/1206.5494v1.pdf

  19. Yang, Z.: Sharp power means bounds for Neuman-Sándor mean, http://arxiv.org/pdf/1208.0895v1.pdf

  20. Yang, Z.-H.: Estimates for Neuman-Sándor mean by power means and their relative errors. J. Math. Inequal. 7, 711–726 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, M.-K., Qiu, Y.-F., Chu, Y.-M.: Sharp bounds for Seiffert means in terms of Lehmer means. J. Math. Inequal. 4, 581–586 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Costin, I., Toader, G. (2014). Optimal Estimations of Seiffert-Type Means By Some Special Gini Means. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics