Skip to main content

Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Abstract

A new algorithm to compute cylindrical algebraic decompositions (CADs) is presented, building on two recent advances. Firstly, the output is truth table invariant (a TTICAD) meaning given formulae have constant truth value on each cell of the decomposition. Secondly, the computation uses regular chains theory to first build a cylindrical decomposition of complex space (CCD) incrementally by polynomial. Significant modification of the regular chains technology was used to achieve the more sophisticated invariance criteria. Experimental results on an implementation in the RegularChains Library for Maple verify that combining these advances gives an algorithm superior to its individual components and competitive with the state of the art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, R., Davenport, J.H.: Towards better simplification of elementary functions. In: Proc. ISSAC 2002, pp. 16–22. ACM (2002)

    Google Scholar 

  2. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Cylindrical algebraic decompositions for boolean combinations. In: Proc. ISSAC 2013, pp. 125–132. ACM (2013)

    Google Scholar 

  3. Bradford, R., Davenport, J.H., England, M., McCallum, S., Wilson, D.: Truth table invariant cylindrical algebraic decomposition. Preprint: arXiv:1401.0645

    Google Scholar 

  4. Bradford, R., Davenport, J.H., England, M., Wilson, D.: Optimising problem formulations for cylindrical algebraic decomposition. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 19–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Algorithms and Computations in Mathematics, vol. 10. Springer (2006)

    Google Scholar 

  6. Brown, C.W.: Simplification of truth-invariant cylindrical algebraic decompositions. In: Proc. ISSAC 1998, pp. 295–301. ACM (1998)

    Google Scholar 

  7. Brown, C.W.: An overview of QEPCAD B: A program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)

    Article  MATH  Google Scholar 

  8. Brown, C.W., El Kahoui, M., Novotni, D., Weber, A.: Algorithmic methods for investigating equilibria in epidemic modelling. J. Symb. Comp. 41, 1157–1173 (2006)

    Article  MATH  Google Scholar 

  9. Brown, C.W., McCallum, S.: On using bi-equational constraints in CAD construction. In: Proc. ISSAC 2005, pp. 76–83. ACM (2005)

    Google Scholar 

  10. Buchberger, B., Hong, H.: Speeding up quantifier elimination by Gröbner bases. Technical report, 91-06. RISC, Johannes Kepler University (1991)

    Google Scholar 

  11. Chen, C., Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive triangular decomposition. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 73–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comp. 47(6), 610–642 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical algebraic decompositions. In: Proc. ASCM 2012. Springer (2012) (to appear) Preprint: arXiv:1210.5543

    Google Scholar 

  14. Chen, C., Moreno Maza, M.: Quantifier elimination by cylindrical algebraic decomposition based on regular chains. In: Proc. ISSAC 2014 (to appear, 2014)

    Google Scholar 

  15. Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular decomposition. In: Proc. ISSAC 2009, pp. 95–102. ACM (2009)

    Google Scholar 

  16. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proc. 2nd GI Conference on Automata Theory and Formal Languages, pp. 134–183. Springer (1975)

    Google Scholar 

  17. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comp. 12, 299–328 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Davenport, J.H., Bradford, R., England, M., Wilson, D.: Program verification in the presence of complex numbers, functions with branch cuts etc. In: Proc. SYNASC 2012, pp. 83–88. IEEE (2012)

    Google Scholar 

  19. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc. ISSAC 2004, pp. 111–118. ACM (2004)

    Google Scholar 

  20. England, M., Bradford, R., Chen, C., Davenport, J.H., Maza, M.M., Wilson, D.: Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS, vol. 8543, pp. 45–60. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  21. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Understanding branch cuts of expressions. In: Carette, J., Aspinall, D., Lange, C., Sojka, P., Windsteiger, W. (eds.) CICM 2013. LNCS, vol. 7961, pp. 136–151. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  22. England, M., Bradford, R., Davenport, J.H., Wilson, D.: Choosing a variable ordering for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 450–457. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  23. England, M., Wilson, D., Bradford, R., Davenport, J.H.: Using the Regular Chains Library to build cylindrical algebraic decompositions by projection and lifting. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 458–465. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  24. Fotiou, I.A., Parrilo, P.A., Morari, M.: Nonlinear parametric optimization using cylindrical algebraic decomposition. In: Proc. Decision and Control, European Control Conference 2005, pp. 3735–3740 (2005)

    Google Scholar 

  25. Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylindrical algebraic decomposition for quantifier elimination. In: Proc. SNC 2009, pp. 55–64 (2009)

    Google Scholar 

  26. McCallum, S.: On projection in CAD-based quantifier elimination with equational constraint. In: Proc. ISSAC 1999, pp. 145–149. ACM (1999)

    Google Scholar 

  27. Paulson, L.C.: Metitarski: Past and future. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Phisanbut, N., Bradford, R.J., Davenport, J.H.: Geometry of branch cuts. ACM Communications in Computer Algebra 44(3), 132–135 (2010)

    Google Scholar 

  29. Schwartz, J.T., Sharir, M.: On the “Piano-Movers” Problem: II. General techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4, 298–351 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  30. Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comp. 41(9), 1021–1038 (2006)

    Article  MATH  Google Scholar 

  31. Strzeboński, A.: Computation with semialgebraic sets represented by cylindrical algebraic formulas. In: Proc. ISSAC 2010, pp. 61–68. ACM (2010)

    Google Scholar 

  32. Wang, D.: Computing triangular systems and regular systems. J. Symb. Comp. 30(2), 221–236 (2000)

    Article  MATH  Google Scholar 

  33. Wilson, D., Bradford, R., Davenport, J.H., England, M.: Cylindrical algebraic sub-decompositions. Mathematics in Computer Science 8(2), 263–288 (2014)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bradford, R., Chen, C., Davenport, J.H., England, M., Moreno Maza, M., Wilson, D. (2014). Truth Table Invariant Cylindrical Algebraic Decomposition by Regular Chains. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics