Skip to main content

CAS Application to the Construction of the Collocations and Least Residuals Method for the Solution of the Burgers and Korteweg–de Vries–Burgers Equations

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Abstract

In the present work, the computer algebra system (CAS) is applied for constructing a new version of the analytic-numerical method of collocations and least residuals (CLR) for solving the Burgers equation and the Korteweg–de Vries–Burgers equation. The CAS is employed at all stages from writing, deriving, and verifying the formulas of the method to their translation into arithmetic operators of the Fortran language. The verification of derived formulas of the method has been done on the test problem solutions. Comparisons of the results of numerical computations by the new CLR method with the exact solutions of test problems show a high accuracy of the developed method.

The work was partially supported by the Russian Foundation for Basic research (grant No. 13-01-00277).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksan, E.N.: Quadratic B-spline finite element method for numerical solution of the Burgers’ equation. Appl. Math. Comput. 174, 884–896 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ali, A.H.A., Gardner, G.A., Gardner, L.R.T.: A collocation solution for Burgers’ equation using cubic B-spline finite elements. Comput. Methods Appl. Mech. Eng. 100, 325–337 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ali, A.H.A., Gardner, L.R.T., Gardner, G.: Numerical studies of the Korteweg–de Vries–Burgers equation using B-spline finite elements. J. Math. Phys. Sci. 27, 37–53 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Altiparmak, K.: Numerical solution of Burgers’ equation with factorized diagonal Padé approximation. Int. J. Numer. Methods Heat Fluid Flow 21(3), 310–319 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Asaithambi, A.: Numerical solution of the Burgers’ equation by automatic differentiation. Appl. Math. Comput. 216, 2700–2708 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berezin, Y.A.: Modeling of Nonlinear Wave Processes. Nauka, Novosibirsk (1982) (in Russian)

    Google Scholar 

  7. Burgers, J.M.: A mathematical model illustrating the theory of turbulence. In: Mises, R., von Kármán, T. (eds.) Advances in Applied Mechanics, pp. 171–199. Academic Press, New York (1948)

    Google Scholar 

  8. Canosa, J., Gazdag, J.: The Korteweg–de Vries–Burgers’ equation. J. Comput. Phys. 23, 393–403 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Crank, J., Nicholson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Cambridge Philosophical Soc. 43(50), 50–67 (1947)

    Article  MATH  Google Scholar 

  10. Darvishi, M.T., Khani, F., Kheybari, S.: A numerical solution of the KdV–Burgers’ equation by spectral collocation method and Darvishi preconditionings. Int. J. Contemp. Math. Sciences 2(22), 1085–1095 (2007)

    MATH  MathSciNet  Google Scholar 

  11. Dăg, I., Irk, D., Sahin, A.: B-Spline collocation methods for numerical solutions of the Burgers’ equation. Math. Probl. Eng. 5, 521–538 (2005)

    Google Scholar 

  12. Dogan, A.A.: Galerkin, Finite element approach to Burgers’ equation. Appl. Math. Comput. 157, 331–346 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. El Sayed, T., El Danaf, A.: Numerical solution of the Korteweg–de Vries Burgers equation by using quintic spline method. Studia Univ. “Babeş-Bolyai”, Mathematica 47(2), 41–54 (2002)

    MATH  Google Scholar 

  14. Ganzha, V.G., Vorozhtsov, E.V.: Numerical Solutions for Partial Differential Equations: Problem Solving Using Mathematica. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  15. Grad, H., Hu, P.N.: Unified shock profile in plasma. Phys. Fluids 10, 2596–2602 (1967)

    Article  Google Scholar 

  16. Hassanien, I.A., Salama, A.A., Hosham, H.A.: Fourth-order finite difference method for solving Burgers’ equation. Appl. Math. Comput. 170, 781–800 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hopf, E.: The partial differential equation u t  + uu x  = μu xx . Comm. Pure Appl. Math. 3, 201–230 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  18. Johnson, R.S.: Shallow water waves in a viscous fluid – the undular bore. Phys. Fluids 15, 1693–1699 (1970)

    Article  Google Scholar 

  19. Isaev, V.I., Shapeev, V.P.: Development of the collocations and least squares method. Proc. Inst. Math. Mech. 261(suppl. 1), 87–106 (2008)

    MathSciNet  Google Scholar 

  20. Isaev, V.I., Shapeev, V.P.: High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations. Computat. Math. and Math. Phys. 50, 1670–1681 (2010)

    Article  MathSciNet  Google Scholar 

  21. Jiang, Z., Wang, R.: An improved numerical solution of Burgers’ equation by cubic B-spline Quasi-interpolation. J. Inform. Comput. Sci. 7(5), 1013–1021 (2010)

    Google Scholar 

  22. Khalifa, A.K., Noor, K.I., Aslam Noor, M.A.: Some numerical methods for solving Burgers equation. Int. J. Phys. Sci. 6(7), 1702–1710 (2011)

    Google Scholar 

  23. Khater, A.H., Temsah, R.S., Hassan, M.M.: A Chebyshev spectral collocation method for solving Burgers’ type equations. J. Comput. Appl. Math. 222, 333–350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kiselev, S.P., Vorozhtsov, E.V., Fomin, V.M.: Foundations of Fluid Mechanics with Applications: Problem Solving Using Mathematica. Birkhäuser, Boston (1999)

    Book  MATH  Google Scholar 

  25. Korkmaz, A.: Shock wave simulations using Sinc Differential Quadrature Method. Int. J. Comput. Aided Eng. Software 28(6), 654–674 (2011)

    Article  MATH  Google Scholar 

  26. Korkmaz, A., Aksoy, A.M., Dăg, I.: Quartic B-spline Differential Quadrature Method. Int. J. Nonlinear Sci. 11(4), 403–411 (2011)

    Google Scholar 

  27. Korkmaz, A., Dăg, I.: Polynomial based differential quadrature method for numerical solution of nonlinear Burgers’ equation. J. Franklin Inst. (2011), doi:10.1016/j.jfranklin.2011.09.008.

    Google Scholar 

  28. Kumar, B.V.R., Mehra, M.: Wavelet-Taylor Galerkin method for the Burgers equation. BIT Numer. Math. 45, 543–560 (2005)

    Article  MATH  Google Scholar 

  29. Kutulay, S., Bahadir, A.R., Özdes, A.: Numerical solution of the one-dimensional Burgers’ equation: explicit and exact-explicit finite difference methods. J. Comput. Appl. Math. 103, 251–261 (1999)

    Article  MathSciNet  Google Scholar 

  30. Kutulay, S., Esen, A., Dag, I.: Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method. J. Comput. Appl. Math. 167, 21–33 (2004)

    Article  MathSciNet  Google Scholar 

  31. Kuznetsov, V.V., Nakoryakov, V.E., Pokusaev, B.G., Shreiber, I.R.: Propagation of perturbations in a gas-liquid mixture. J. Fluid Mech. 85(1), 85–96 (1978)

    Article  Google Scholar 

  32. Liao, W.: An implicit fourth-order compact finite difference scheme for one-dimensional Burgers’ equation. Appl. Math. Comput. 206, 755–764 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mittal, R.C., Jain, R.K.: Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Özis, T., Esen, A., Kutluay, S.: Numerical solution of Burgers’ equation by quadratic B-spline finite elements. Appl. Math. Comput. 165, 237–249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ramadan, M.A., El-Danaf, T.S., Abd Alaal, F.E.I.: Application of the non-polynomial spline approach to the solution of the Burgers equation. Open Appl. Math. J. 1, 15–20 (2007)

    Article  MathSciNet  Google Scholar 

  36. Raslan, K.R.: A collocation solution for Burgers equation using quadratic B-spline finite elements. Int. J. Comput. Math. 80(7), 931–938 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Saka, B., Dag, I.: Quartic B-spline collocation method to the numerical solutions of the Burgers’ equation. Chaos Solitons Fractals 32, 1125–1137 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Semin, L., Shapeev, V.: Constructing the numerical method for Navier–Stokes equations using computer algebra system. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 367–378. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  39. Semin, L.G., Sleptsov, A.G., Shapeev, V.P.: Collocation and least-squares method for Stokes equations. Computat. Technologies 1(2), 90–98 (1996) (in Russian)

    Google Scholar 

  40. Shapeev, V.P., Isaev, V.I., Idimeshev, S.V.: The collocations and least squares method: application to numerical solution of the Navier-Stokes equations. In: CD-ROM Proceedings of the 6th ECCOMAS, Vienna Univ. of Tech. (September 2012) ISBN: 978-3-9502481-9-7

    Google Scholar 

  41. Shapeev, V.P., Vorozhtsov, E.V.: Symbolic-numeric implementation of the method of collocations and least squares for 3D Navier–Stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 321–333. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  42. Shapeev, V.P., Vorozhtsov, E.V.: CAS application to the construction of the collocations and least residuals method for the solution of 3D Navier–Stokes equations. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 381–392. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  43. Shapeev, V.P., Vorozhtsov, E.V., Isaev, V.I., Idimeshev, S.V.: The method of collocations and least residuals for three-dimensional Navier-Stokes equations. Computational Methods and Programming 14, 306–322 (2013) (in Russian)

    Google Scholar 

  44. Xie, S.-S., Heo, S., Kim, S., Woo, G., Yi, S.: Numerical solution of one-dimensional Burgers’ equation using reproducing kernel function. J. Comput. Appl. Math. 214, 417–434 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shapeev, V.P., Vorozhtsov, E.V. (2014). CAS Application to the Construction of the Collocations and Least Residuals Method for the Solution of the Burgers and Korteweg–de Vries–Burgers Equations. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics