Skip to main content

Deterministically Computing Reduction Numbers of Polynomial Ideals

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Included in the following conference series:

Abstract

We discuss the problem of determining reduction numbers of a polynomial ideal \(\mathcal{I}\) in n variables. We present two algorithms based on parametric computations. The first one determines the absolute reduction number of \(\mathcal{I}\) and requires computations in a polynomial ring with (n–dim\(\mathcal{I}\))dim\(\mathcal{I}\) parameters and n–dim\(\mathcal{I}\) variables. The second one computes via a Gröbner system the set of all reduction numbers of the ideal \(\mathcal{I}\) and thus in particular also its big reduction number. However, it requires computations in a ring with ndim\(\mathcal{I}\) parameters and n variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, M., Hashemi, A., Pytlik, P., Schweinfurter, M., Seiler, W.: Effective genericity for polynomial ideals (in preparation, 2014)

    Google Scholar 

  2. Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexicographic orders. Duke J. Math. 55, 321–328 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bresinsky, H., Hoa, L.: On the reduction number of some graded algebras. Proc. Amer. Math. Soc. 127, 1257–1263 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Conca, A.: Reduction numbers and initial ideals. Proc. Amer. Math. Soc. 131, 1015–1020 (2002)

    Article  MathSciNet  Google Scholar 

  5. Galligo, A.: A propos du théorème de préparation de Weierstrass. In: Norguet, F. (ed.) Fonctions de Plusieurs Variables Complexes. Lecture Notes in Mathematics, vol. 409, pp. 543–579. Springer, Berlin (1974)

    Chapter  Google Scholar 

  6. Galligo, A.: Théorème de division et stabilité en géometrie analytique locale. Ann. Inst. Fourier 29(2), 107–184 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Green, M.: Generic initial ideals. In: Elias, J., Giral, J., Miró-Roig, R., Zarzuela, S. (eds.) Six Lectures on Commutative Algebra. Progress in Mathematics, vol. 166, pp. 119–186. Birkhäuser, Basel (1998)

    Chapter  Google Scholar 

  8. Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  9. Hashemi, A., Schweinfurter, M., Seiler, W.: Quasi-stability versus genericity. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 172–184. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Koepf, W. (ed.) Proc. ISSAC 2010, pp. 29–36. ACM Press (2010)

    Google Scholar 

  11. Kapur, D., Sun, Y., Wang, D.: An efficient algorithm for computing a comprehensive Gröbner system of a parametric polynomial system. J. Symb. Comput. 49, 27–44 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Mayr, E., Meyer, A.: The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math. 46, 305–329 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Montes, A.: A new algorithm for discussing Gröbner bases with parameters. J. Symb. Comput. 33, 183–208 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45, 1391–1425 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Northcott, D., Rees, D.: Reduction of ideals in local rings. Cambridge Philos. Soc. 50, 145–158 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sato, Y., Suzuki, A.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Dumas, J.-G (ed.) Proc. ISSAC 2006, pp. 326–331. ACM Press (2006)

    Google Scholar 

  17. Seiler, W.: A combinatorial approach to involution and δ-regularity I: Involutive bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20, 207–259 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Seiler, W.: A combinatorial approach to involution and δ-regularity II: Structure analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm. Comp. 20, 261–338 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Trung, N.: Reduction exponent and degree bounds for the defining equations of a graded ring. Proc. Amer. Math. Soc. 101, 229–236 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Trung, N.: Gröbner bases, local cohomology and reduction number. Proc. Amer. Math. Soc. 129, 9–18 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Trung, N.: Constructive characterization of the reduction numbers. Compos. Math. 137, 99–113 (2003)

    Article  MATH  Google Scholar 

  22. Vasconcelos, W.: The reduction number of an algebra. Compos. Math. 106, 189–197 (1996)

    MathSciNet  Google Scholar 

  23. Vasconcelos, W.: Reduction numbers of ideals. J. Alg. 216, 652–664 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Weispfenning, V.: Comprehensive Gröbner bases. J. Symb. Comp. 14, 1–29 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hashemi, A., Schweinfurter, M., Seiler, W.M. (2014). Deterministically Computing Reduction Numbers of Polynomial Ideals. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics