Skip to main content

Symbolic-Numerical Solution of Boundary-Value Problems with Self-adjoint Second-Order Differential Equation Using the Finite Element Method with Interpolation Hermite Polynomials

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2014)

Abstract

We present a symbolic algorithm generating finite-element schemes with interpolating Hermite polynomials intended for solving the boundary-value problems with self-adjoint second-order differential equation and implemented in the Maple computer algebra system. Recurrence relations for the calculation in analytical form of the interpolating Hermite polynomials with nodes of arbitrary multiplicity are derived. The integrals of interpolating Hermite polynomials are used for constructing the stiffness and mass matrices and formulating a generalized algebraic eigenvalue problem. The algorithm is used to generate Fortran routines that allow solution of the generalized algebraic eigenvalue problem with matrices of large dimension. The efficiency of the programs generated in Maple and Fortran is demonstrated by the examples of exactly solvable quantum-mechanical problems with continuous and piecewise continuous potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bathe, K.J.: Finite Element Procedures in Engineering Analysis, Englewood Cliffs. Prentice Hall, New York (1982)

    Google Scholar 

  2. Becker, E.B., Carey, G.F., Tinsley Oden, J.: Finite elements. An introduction, vol. I. Prentice-Hall, Inc., Englewood Cliffs (1981)

    Google Scholar 

  3. Berezin, I.S., Zhidkov, N.P.: Computing Methods, vol. I. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  4. Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I., Abrashkevich, A.G.: ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem. Comput. Phys. Commun. 180, 1358–1375 (2009)

    Article  MATH  Google Scholar 

  5. Chuluunbaatar, O., Gusev, A.A., Gerdt, V.P., Kaschiev, M.S., Rostovtsev, V.A., Samoylov, V., Tupikova, T., Vinitsky, S.I.: A symbolic-numerical Algorithm for solving the eigenvalue problem for a hydrogen atom in the magnetic field: cylindrical coordinates. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2007. LNCS, vol. 4770, pp. 118–133. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Chuluunbaatar, O., et al.: KANTBP: A program for computing energy levels, reaction matrix and radial wave functions in the coupled-channel hyperspherical adiabatic approach. Comput. Phys. Commun. 177, 649–675 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cwiok, S., et al.: Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed Woods-Saxon potential with applications to the two-centre-type nuclear problems. Comput. Phys. Communications 46, 379–399 (1987)

    Article  Google Scholar 

  8. Gusev, A.A., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A., Vinitsky, S.I., Derbov, V.L., Serov, V.V.: Symbolic-numeric algorithms for computer analysis of spheroidal quantum dot models. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2010. LNCS, vol. 6244, pp. 106–122. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Gusev, A.A., Vinitsky, S.I., Chuluunbaatar, O., Gerdt, V.P., Rostovtsev, V.A.: Symbolic-numerical algorithms to solve the quantum tunneling problem for a coupled pair of ions. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 175–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Ramdas Ram-Mohan, L.: Finite Element and Boundary Element Aplications in Quantum Mechanics. Oxford University Press, New York (2002)

    Google Scholar 

  11. Samarski, A.A., Gulin, A.V.: Numerical methods, Nauka, Moscow (1989) (in Russian)

    Google Scholar 

  12. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  13. Vinitsky, S., Gusev, A., Chuluunbaatar, O., Rostovtsev, V., Le Hai, L., Derbov, V., Krassovitskiy, P.: Symbolic-numerical algorithm for generating cluster eigenfunctions: quantum tunneling of clusters through repulsive barriers. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 427–442. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gusev, A.A. et al. (2014). Symbolic-Numerical Solution of Boundary-Value Problems with Self-adjoint Second-Order Differential Equation Using the Finite Element Method with Interpolation Hermite Polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics