Skip to main content

Computable Infinite Power Series in the Role of Coefficients of Linear Differential Systems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Included in the following conference series:

Abstract

We consider linear ordinary differential systems over a differential field of characteristic 0. We prove that testing unimodularity and computing the dimension of the solution space of an arbitrary system can be done algorithmically if and only if the zero testing problem in the ground differential field is algorithmically decidable. Moreover, we consider full-rank systems whose coefficients are computable power series and we show that, despite the fact that such a system has a basis of formal exponential-logarithmic solutions involving only computable series, there is no algorithm to construct such a basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramov, S.A., Barkatou, M.A.: On the dimension of solution spaces of full rank linear differential systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 1–9. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Abramov, S.A., Barkatou, M.A.: On solution spaces of products of linear differential or difference operators. ACM Communications in Computer Algebra (accepted)

    Google Scholar 

  3. Abramov, S.A., Barkatou, M.A., Khmelnov, D.E.: On full-rank differential systems with power series coefficients. J. Symbolic Comput. (accepted)

    Google Scholar 

  4. Abramov, S.A., Khmelnov, D.E.: Desingularization of leading matrices of systems of linear ordinary differential equations with polynomial coefficients. In: International Conference “Differential Equations and Related Topics” Dedicated to I.G.Petrovskii, Moscow, MSU, May 30-June 4, p. 5. Book of Abstracts (2011)

    Google Scholar 

  5. Abramov, S.A., Khmelnov, D.E.: On singular points of solutions of linear differential systems with polynomial coefficients. J. Math. Sciences 185(3), 347–359 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Abramov, S.A., Khmelnov, D.E.: Regular solutions of linear differential systems with power series coefficients. Programming and Computer Software 40(2), 98–106 (2014)

    Article  Google Scholar 

  7. Barkatou, M.A.: An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system. Applicable Algebra in Engineering, Communication and Computing 8, 1–23 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Barkatou, M.A., El Bacha, C., Labahn, G., Pflügel, E.: On simultaneous row and column reduction of higher-order linear differential systems. J. Symbolic Comput. 49(1), 45–64 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Beckermann, B., Cheng, H., Labahn, G.: Fraction-free row reduction of matrices of Ore polynomials. J. Symbolic Comput. 41(5), 513–543 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Denef, J., Lipshitz, L.: Power series solutions of algebraic differential equations. Math. Ann. 267, 213–238 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Frölich, A., Shepherdson, J.C.: Effective procedures in field theory. Phil. Trans. R. Soc. Lond. 248(950), 407–432 (1956)

    Article  Google Scholar 

  12. Grigoriev, D.: NC solving of a system of linear differential equations in several unknowns. Theor. Comput. Sci. 157(1), 79–90 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. van der Hoeven, J., Shackell, J.R.: Complexity bounds for zero-test algorithms. J. Symbolic Comput. 41(4), 1004–1020 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kushner, B.A.: Lectures on Constructive Mathematical Analysis (Translations of Mathematical Monographs) Amer. Math. Soc. (1984)

    Google Scholar 

  15. Lutz, D.A., Schäfke, R.: On the identification and stability of formal invariants for singular differential equations. Linear Algebra and Its Applications 72, 1–46 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Martin-Löf, P.: Notes on Constructive Mathematics. Almquist & Wiskell, Stokholm (1970)

    Google Scholar 

  17. Pflügel, E.: Effective formal reduction of linear differential systems. Applicable Algebra in Engineering, Communication and Computation 10(2), 153–187 (2000)

    Article  MATH  Google Scholar 

  18. van der Put, M., Singer, M.F.: Galois Theory of Linear Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 328. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  19. Ryabenko, A.: On exponential-logarithmic solutions of linear differential systems with power series coefficients (In preparation)

    Google Scholar 

  20. Schlesinger, L.: Handbuch der Theorie der linearen Differentialgleichungen, vol. 1. Teubner, Leipzig (1895)

    MATH  Google Scholar 

  21. Tseitin, G.S.: Mean-value Theorems in Constructive Analysis. Problems of the Constructive Direction in Mathematics. Part 2. Constructive Mathematical Analysis. Collection of Articles: Trudy Mat. Inst. Steklov, Acad. Sci. USSR 67, 362–384 (1962)

    Google Scholar 

  22. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc., Series 2 42, 230–265 (1936)

    Google Scholar 

  23. Maple online help, http://www.maplesoft.com/support/help/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Abramov, S.A., Barkatou, M.A. (2014). Computable Infinite Power Series in the Role of Coefficients of Linear Differential Systems. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics