Skip to main content

Genetic Manipulation of Meyerozyma guilliermondii

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 2

Abstract

Candida guilliermondii (teleomorph Meyerozyma guilliermondii) is an ascomycetous species belonging to the Saccharomycotina CTG clade which has been studied over the last forty years due to its biotechnological interest, biological control potential and clinical importance. Such a wide range of applications in various areas of fundamental and applied scientific research has progressively made C. guilliermondii an attractive model for exploring the potential of yeast metabolic engineering as well as for elucidating new molecular events supporting pathogenicity and antifungal resistance. All these research fields now take advantage of the establishment of a useful molecular toolbox specifically dedicated to C. guilliermondii genetics including the construction of recipient strains, the development of selectable markers and reporter genes and optimization of transformation protocols. This area of study is further supported by the availability of the complete genome sequence of the reference strain ATCC 6260. In this chapter, we provide some recent protocols allowing culture, genetic transformation, gene disruption and fusion to fluorescent protein genes for subcellular localization in this yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas CA, Sibirny AA (2011) Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev 75:321–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bai FY (1996) Separation of Candida fermentati comb nov from Candida guilliermondii by DNA base composition and electrophoretic karyotyping. Syst Appl Microbiol 19:178–181

    Article  CAS  Google Scholar 

  • Becker DM, Guarente L (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187

    Article  CAS  PubMed  Google Scholar 

  • Boretskii IR, Petrishin AV, Kriger K, Rikhter G, Fedorovich DV, Bakher A (2002) Cloning and expression of a gene encoding riboflavin synthase of the yeast Pichia guilliermondii. Tsitol Genet 36:3–7, Russian

    CAS  PubMed  Google Scholar 

  • Boretsky YR, Kapustyak KY, Fayura LR, Stasyk OV, Stenchuk MM, Bobak YP, Drobot LB, Sibirny AA (2005) Positive selection of mutants defective in transcriptional repression of riboflavin synthesis by iron in the flavinogenic yeast Pichia guilliermondii. FEMS Yeast Res 5:829–837

    Article  CAS  PubMed  Google Scholar 

  • Boretsky YR, Pynyaha YV, Boretsky VY, Kutsyaba VI, Protchenko OV, Philpott CC, Sibirny AA (2007) Development of a transformation system for gene knock-out in the flavinogenic yeast Pichia guilliermondii. J Microbiol Meth 70:13–19

    Article  CAS  Google Scholar 

  • Boretsky Y, Voronovsky A, Liuta-Tehlivets O, Hasslacher M, Kohlwein SD, Shavlovsky GM (1999) Identification of an ARS element and development of a high efficiency transformation system for Pichia guilliermondii. Curr Genet 36:215–221

    Article  CAS  PubMed  Google Scholar 

  • Boretsky YR, Pynyaha YV, Boretsky VY, Fedorovych DV, Fayura LR, Protchenko O, Philpott CC, Sibirny AA (2011) Identification of the genes affecting the regulation of riboflavin synthesis in the flavinogenic yeast Pichia guilliermondii using insertion mutagenesis. FEMS Yeast Res 11:307–314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Canettieri EV, Almeida e Silva JB, Felipe MG (2001) Application of factorial design to the study of xylitol production from eucalyptus hemicellulosic hydrolysate. Appl Biochem Biotechnol 94:159–168

    Article  CAS  PubMed  Google Scholar 

  • Carvalho W, Silva SS, Converti A, Vitolo M (2002) Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol Bioeng 79:165–169

    Article  CAS  PubMed  Google Scholar 

  • Castellani A (1912) Observations on the fungi found in tropical bronchomycosis. Lancet 1:13–15

    Article  Google Scholar 

  • Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M (2013) Antifungal activity of Meyerozyma guilliermondii: identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol 33:243–251

    Article  PubMed  Google Scholar 

  • Courdavault V, Millerioux Y, Clastre M, Simkin AJ, Marais E, Creche J, Giglioli-Guivarc’h N, Papon N (2011) Fluorescent protein fusions in Candida guilliermondii. Fungal Genet Biol 48:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5:3376–3385

    PubMed Central  CAS  PubMed  Google Scholar 

  • Desnos-Ollivier M, Ragon M, Robert V, Raoux D, Gantier JC, Dromer F (2008) Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often misidentified as Pichia guilliermondii (Candida guilliermondii). J Clin Microbiol 46:3237–3242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99

    Article  PubMed Central  PubMed  Google Scholar 

  • Foureau E, Clastre M, Millerioux Y, Simkin AJ, Cornet L, Dutilleul C, Besseau S, Marais E, Melin C, Guillard J, Creche J, Giglioli-Guivarc’h N, Courdavault V, Papon N (2012a) A TRP5/5-fluoroanthranilic acid counter-selection system for gene disruption in Candida guilliermondii. Curr Genet 58:245–254

    Article  CAS  PubMed  Google Scholar 

  • Foureau E, Courdavault V, Navarro Gallón SM, Besseau S, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc’h N, Clastre M, Papon N (2013a) Characterization of an autonomously replicating sequence in Candida guilliermondii. Microbiol Res 168:580–588

    Article  CAS  PubMed  Google Scholar 

  • Foureau E, Courdavault V, Rojas LF, Dutilleul C, Simkin AJ, Crèche J, Atehortùa L, Giglioli-Guivarc’h N, Clastre M, Papon N (2013b) Efficient gene targeting in a Candida guilliermondii non-homologous end-joining pathway-deficient strain. Biotechnol Lett 35:1035–1043

    Article  CAS  PubMed  Google Scholar 

  • Foureau E, Courdavault V, Simkin AJ, Pichon O, Creche J, Giglioli-Guivarc’h N, Clastre M, Papon N (2012b) Optimization of the URA-blaster disruption system in Candida guilliermondii: efficient gene targeting using the URA3 marker. J Microbiol Meth 91:117–120

    Article  CAS  Google Scholar 

  • Foureau E, Courdavault V, Simkin AJ, Sibirny AA, Crèche J, Giglioli-Guivarc’h N, Clastre M, Papon N (2013c) Transformation of Candida guilliermondii wild-type strains using the Staphylococcus aureus MRSA 252 ble gene as a phleomycin-resistant marker. FEMS Yeast Res 13:354–358

    Article  CAS  PubMed  Google Scholar 

  • Guo N, Gong F, Chi Z, Sheng J, Li J (2009) Enhanced inulinase production in solid state fermentation by a mutant of the marine yeast Pichia guilliermondii using surface response methodology and inulin hydrolysis. J Ind Microbiol Biotechnol 36:499–507

    Article  CAS  PubMed  Google Scholar 

  • Kreger van Rij NJW (1970) In: Lodder J (ed) The yeasts. A taxonomic study, 2nd edn. North-Holland Publ, Amsterdam, pp 455–458

    Google Scholar 

  • Kurtzman CP, Suzuki M (2010) Phylogenetic analysis of ascomycete yeasts that form coenzyme Q-9 and the proposal of the new genera Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. Mycoscience 51:2–14

    Article  CAS  Google Scholar 

  • Liauta-Teglivets O, Hasslacher M, Boretskii IR, Kohlwein SD, Shavlovskii GM (1995) Molecular cloning of the GTP-cyclohydrolase structural gene RIB1 of Pichia guilliermondii involved in riboflavin biosynthesis. Yeast 11:945–952

    Article  CAS  PubMed  Google Scholar 

  • Millerioux Y, Clastre M, Simkin AJ, Courdavault V, Marais E, Sibirny AA, Noel T, Creche J, Giglioli-Guivarc’h N, Papon N (2011a) Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains. FEMS Yeast Res 11:457–463

    Article  CAS  PubMed  Google Scholar 

  • Millerioux Y, Clastre M, Simkin AJ, Marais E, Sibirny AA, Noel T, Creche J, Giglioli-Guivarc’h N, Papon N (2011b) Development of a URA5 integrative cassette for gene disruption in the Candida guilliermondii ATCC 6260 strain. J Microbiol Meth 84:355–358

    Article  CAS  Google Scholar 

  • Papon N, Courdavault V, Clastre M, Bennett RJ (2013a) Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm. PLoS Pathog 9(9):e1003550

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Papon N, Savini V, Lanoue A, Simkin AJ, Crèche J, Giglioli-Guivarc’h N, Clastre M, Courdavault V, Sibirny AA (2013b) Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet 59:73–90

    Article  CAS  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D et al (2010) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48:1366–1377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piniaga IV, Prokopiv TM, Petrishin AV, Khalimonchuk OV, Protchenko OV, Fedorovich DV, Boretskiĭ IR (2002) The reversion of Pichia guilliermondii transformants to the wild-type phenotype. Mikrobiologiia 71:368–372, Russian

    PubMed  Google Scholar 

  • Pynyaha YV, Boretsky YR, Fedorovych DV, Fayura LR, Levkiv AI, Ubiyvovk VM, Protchenko OV, Philpott CC, Sibirny AA (2009) Deficiency in frataxin homologue YFH1 in the yeast Pichia guilliermondii leads to missregulation of iron acquisition and riboflavin biosynthesis and affects sulfate assimilation. Biometals 22:1051–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reedy JL, Floyd AM, Heitman J (2009) Mechanistic plasticity of sexual reproduction and meiosis in the Candida pathogenic species complex. Curr Biol 19:891–899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rodrigues RC, Sene L, Matos GS, Roberto IC, Pessoa A Jr, Felipe MG (2006) Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 53:53–59

    Article  CAS  PubMed  Google Scholar 

  • San Millan RM, Wu LC, Salkin IF, Lehmann PF (1997) Clinical isolates of Candida guilliermondii include Candida fermentati. Int J Syst Bacteriol 47:385–393

    Article  CAS  PubMed  Google Scholar 

  • Savini V, Catavitello C, Onofrillo D, Masciarelli G, Astolfi D, Balbinot A, Febbo F, D'Amario C, D'Antonio D (2011) What do we know about Candida guilliermondii? A voyage throughout past and current literature about this emerging yeast. Mycoses 54:434–441

    Article  PubMed  Google Scholar 

  • Schirmer-Michel AC, Flôres SH, Hertz PF, Matos GS, Ayub MA (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresour Technol 99:2898–2904

    Article  CAS  PubMed  Google Scholar 

  • Sibirny AA (1996) Chapter VII. Pichia guilliermondii. In: Wolf K (ed) Nonconvential yeasts in biotechnology. Springer, Berlin, pp 255–272

    Chapter  Google Scholar 

  • Sibirnyi AA, Shavlovskii GM, Ksheminskaya GP, Orlovskaya AG (1977) Active transport of riboflavin in the yeast Pichia guilliermondii. Detection and some properties of the cryptic riboflavin permease. Biochemistry 42:1851–1860

    Google Scholar 

  • Sibirny AA, Boretsky YR (2009) Pichia guilliermondii. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer Science+Business Media B.V., Dordrecht, pp 113–134

    Chapter  Google Scholar 

  • Sibirny AA, Shavlovsky GM (1984) Identification of regulatory genes of riboflavin permease and alpha-glucosidase in the yeast Pichia guilliermondii. Curr Gen 8:107–114

    Article  CAS  Google Scholar 

  • Shchelokova IP, Zharova VP, Kvasnikov EI (1974) Obtaining hybrids of haploid strains of Pichia guilliermondii Wickerham that assimilate petroleum hydrocarbons. Mikrobiol Zh 36:275–278

    CAS  PubMed  Google Scholar 

  • Tanner FW, Vojnovich C, Vanlanen JM (1945) Riboflavin production by Candida species. Science 101:180–181

    Article  CAS  PubMed  Google Scholar 

  • Toyn JH, Gunyuzlu PL, White WH, Thompson LA, Hollis GF (2000) A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 16:553–560

    Article  CAS  PubMed  Google Scholar 

  • Vaughan-Martini A, Kurtzman CP, Meyer SA, O'Neill EB (2005) Two new species in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state of Candida fermentati, and Candida carpophila comb. nov. FEMS Yeast Res 5:463–469

    Article  CAS  PubMed  Google Scholar 

  • Yamamura M, Makimura K, Fujisaki R, Satoh K, Kawakami S, Nishiya H, Ota Y (2009) Polymerase chain reaction assay for specific identification of Candida guilliermondii (Pichia guilliermondii). J Infect Chemother 15:214–218

    Article  CAS  PubMed  Google Scholar 

  • Wah TT, Walaisri S, Assavanig A, Niamsiri N, Lertsiri S (2013) Co-culturing of Pichia guilliermondii enhanced volatile flavor compound formation by Zygosaccharomyces rouxii in the model system of Thai soy sauce fermentation. Int J Food Microbiol 160:282–289

    Article  CAS  PubMed  Google Scholar 

  • Wickerham LJ (1966) Validation of the species Pichia guilliermondii. J Bacteriol 92:1269

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wickerham LJ, Burton KA (1954) A clarification of the relationship of Candida guilliermondii to other yeasts by a study of their mating types. J Bacteriol 68:594–597

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang DP, Spadaro D, Valente S, Garibaldi A, Gullino ML (2011) Cloning, characterization and expression of an exo-1,3-beta-glucanase gene from the antagonistic yeast, Pichia guilliermondii strain M8 against grey mold on apples. Biol Contr 59:284–293

    Article  CAS  Google Scholar 

  • Zharova VP, Kvasnikov EI, Naumov GI (1980) Production and genetic analysis of Pichia guilliermondii Wicherham mutants that do not assimilate hexadecane. Mikrobiol Zh 42:167–171

    CAS  PubMed  Google Scholar 

  • Zharova VP, Schelokova IF, Kvasnikov EI (1977) Genetic study of alkane utilization in yeast Pichia guilliermondii Wickerham. 1. Identification of haploid cultures by mating type and obtaining their hybrids. Genetika 13:309–313

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Papon or Andriy A. Sibirny Ph.D., Dr.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Papon, N., Boretsky, Y.R., Courdavault, V., Clastre, M., Sibirny, A.A. (2015). Genetic Manipulation of Meyerozyma guilliermondii . In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 2. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10503-1_21

Download citation

Publish with us

Policies and ethics