Skip to main content

Genetic and Genomic Manipulations in Aspergillus niger

  • Chapter
  • First Online:
  • 2490 Accesses

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Well-characterized selectable markers and promoters have been developed for the efficient transformation of Aspergillus niger for the production of proteins and for strain construction. Genetic transformation of this organism has been used widely for the production and secretion of homologous proteins and proteins from animals, plants, bacteria, and other fungi. The genome of A. niger harbors hundreds of genes encoding gene regulators, solute transporters, and biomass-degrading enzymes. Genome-wide and genome-based studies have substantially enhanced our understanding of the metabolic network, the roles of transcription regulators, and the identity of secondary metabolites. These studies have also led to the rational design of strains for the improved production and secretion of proteins and metabolites. With a finished genome sequence and robust transformation systems, A. niger is well positioned to become a synthetic biology platform.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adav SS, Li AA, Manavalan A, Punt P, Sze SK (2010) Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. J Proteome Res 9:3932–3940. doi:10.1021/pr100148j

    CAS  PubMed  Google Scholar 

  • Ahuja M, Punekar NS (2008) Phosphinothricin resistance in Aspergillus niger and its utility as a selectable transformation marker. Fungal Genet Biol 45:1103–1110, DOI: http://dx.doi.org/10.1016/j.fgb.2008.04.002

    CAS  PubMed  Google Scholar 

  • Andersen MR, Lehmann L, Nielsen J (2009) Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol 10:R47. doi:10.1186/gb-2009-10-5-r47

    PubMed Central  PubMed  Google Scholar 

  • Andersen MR, Nielsen ML, Nielsen J (2008) Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 4:178. doi:10.1038/msb.2008.12

    PubMed Central  PubMed  Google Scholar 

  • Andersen MR, Salazar MP, Schaap PJ, van de Vondervoort PJ, Culley D, Thykaer J, Frisvad JC, Nielsen KF, Albang R, Albermann K, Berka RM, Braus GH, Braus-Stromeyer SA, Corrochano LM, Dai Z, van Dijck PW, Hofmann G, Lasure LL, Magnuson JK, Menke H, Meijer M, Meijer SL, Nielsen JB, Nielsen ML, van Ooyen AJ, Pel HJ, Poulsen L, Samson RA, Stam H, Tsang A, van den Brink JM, Atkins A, Aerts A, Shapiro H, Pangilinan J, Salamov A, Lou Y, Lindquist E, Lucas S, Grimwood J, Grigoriev IV, Kubicek CP, Martinez D, van Peij NN, Roubos JA, Nielsen J, Baker SE (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897. doi:10.1101/gr.112169.110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Archer DB, Jeenes DJ, MacKenzie DA, Brightwell G, Lambert N, Lowe G, Radford SE, Dobson CM (1990) Hen egg white lysozyme expressed in, and secreted from, Aspergillus niger is correctly processed and folded. Biotechnology (N Y) 8:741–745

    CAS  Google Scholar 

  • Azizi M, Yakhchali B, Ghamarian A, Enayati S, Khodabandeh M, Khalaj V (2013) Cloning and expression of Gumboro VP2 antigen in Aspergillus niger. Avicenna J Med Biotechnol 5:35–41

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartling S, van den Hombergh JP, Olsen O, von Wettstein D, Visser J (1996) Expression of an Erwinia pectate lyase in three species of Aspergillus. Curr Genet 29:474–481

    CAS  PubMed  Google Scholar 

  • Battaglia E, Hansen SF, Leendertse A, Madrid S, Mulder H, Nikolaev I, de Vries RP (2011a) Regulation of pentose utilisation by AraR, but not XlnR, differs in Aspergillus nidulans and Aspergillus niger. Appl Microbiol Biotechnol 91:387–397. doi:10.1007/s00253-011-3242-2

    PubMed Central  CAS  PubMed  Google Scholar 

  • Battaglia E, Visser L, Nijssen A, van Veluw GJ, Wosten HA, de Vries RP (2011b) Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol 69:31–38. doi:10.3114/sim.2011.69.03

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benech R-O, Li X, Patton D, Powlowski J, Storms R, Bourbonnais R, Paice M, Tsang A (2007) Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzym Microb Tech 41:740–747, DOI: http://dx.doi.org/10.1016/j.enzmictec.2007.06.012

    CAS  Google Scholar 

  • Benghazi L, Record E, Suarez A, Gomez-Vidal JA, Martinez J, de la Rubia T (2014) Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World J Microbiol Biotechnol 30:201–211

    Google Scholar 

  • Blumhoff ML, Steiger MG, Mattanovich D, Sauer M (2013) Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26–32. doi:10.1016/j.ymben.2013.05.003

    CAS  PubMed  Google Scholar 

  • Bohlin C, Jonsson LJ, Roth R, van Zyl WH (2006) Heterologous expression of Trametes versicolor laccase in Pichia pastoris and Aspergillus niger. Appl Biochem Biotechnol 129–132:195–214

    PubMed  Google Scholar 

  • Bojsen K, Yu S, Kragh KM, Marcussen J (1999) A group of α-1,4-glucan lyases and their genes from the red alga Gracilariopsis lemaneiformis: purification, cloning, and heterologous expression. Biochim Biophys Acta 1430:396–402, DOI: http://dx.doi.org/10.1016/S0167-4838(99)00017-5

    CAS  PubMed  Google Scholar 

  • Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ (2010) An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11:584. doi:10.1186/1471-2164-11-584

    PubMed Central  PubMed  Google Scholar 

  • Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CA (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31:135–145

    CAS  PubMed  Google Scholar 

  • Bussink HJ, Buxton FP, Visser J (1991) Expression and sequence comparison of the Aspergillus niger and Aspergillus tubigensis genes encoding polygalacturonase II. Curr Genet 19:467–474

    CAS  PubMed  Google Scholar 

  • Buxton FP, Gwynne DI, Davies RW (1985) Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene 37:207–214

    CAS  PubMed  Google Scholar 

  • Buxton FP, Gwynne DI, Davies RW (1989) Cloning of a new bidirectionally selectable marker for Aspergillus strains. Gene 84:329–334, DOI: http://dx.doi.org/10.1016/0378-1119(89)90507-6

    CAS  PubMed  Google Scholar 

  • Camarero S, Pardo I, Canas AI, Molina P, Record E, Martinez AT, Martinez MJ, Alcalde M (2012) Engineering platforms for directed evolution of Laccase from Pycnoporus cinnabarinus. Appl Environ Microbiol 78:1370–1384. doi:10.1128/AEM.07530-11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho ND, Jorgensen TR, Arentshorst M, Nitsche BM, van den Hondel CA, Archer DB, Ram AF (2012) Genome-wide expression analysis upon constitutive activation of the HacA bZIP transcription factor in Aspergillus niger reveals a coordinated cellular response to counteract ER stress. BMC Genomics 13:350. doi:10.1186/1471-2164-13-350

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho NDSP, Arentshorst M, Jin KM, Meyer V, Ram AFJ (2010) Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 87:1463–1473. doi:10.1007/s00253-010-2588-1

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chiang YM, Meyer KM, Praseuth M, Baker SE, Bruno KS, Wang CC (2011) Characterization of a polyketide synthase in Aspergillus niger whose product is a precursor for both dihydroxynaphthalene (DHN) melanin and naphtho-gamma-pyrone. Fungal Genet Biol 48:430–437. doi:10.1016/j.fgb.2010.12.001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conesa A, Jeenes D, Archer DB, van den Hondel CA, Punt PJ (2002) Calnexin overexpression increases manganese peroxidase production in Aspergillus niger. Appl Environ Microbiol 68:846–851

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conesa A, van De Velde F, van Rantwijk F, Sheldon RA, van Den Hondel CA, Punt PJ (2001) Expression of the Caldariomyces fumago chloroperoxidase in Aspergillus niger and characterization of the recombinant enzyme. J Biol Chem 276(21):17635–17640

    CAS  PubMed  Google Scholar 

  • Conesa A, van den Hondel CA, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cortes-Espinosa DV, Absalon AE, Sanchez N, Loera O, Rodriguez-Vazquez R, Fernandez FJ (2011) Heterologous expression of manganese peroxidase in Aspergillus niger and its effect on phenanthrene removal from soil. J Mol Microbiol Biotechnol 21:120–129. doi:10.1159/000331563

    CAS  PubMed  Google Scholar 

  • Dave K, Ahuja M, Jayashri TN, Sirola RB, Punekar NS (2012) A novel selectable marker based on Aspergillus niger arginase expression. Enzyme Microb Technol 51:53–58, DOI: http://dx.doi.org/10.1016/j.enzmictec.2012.04.001

    CAS  PubMed  Google Scholar 

  • Dave K, Punekar NS (2011) Utility of Aspergillus niger citrate synthase promoter for heterologous expression. J Biotechnol 155:173–177, DOI: http://dx.doi.org/10.1016/j.jbiotec.2011.06.012

    CAS  PubMed  Google Scholar 

  • Davies RW (1994) Heterologous gene expression and protein secretion in Aspergillus. Prog Ind Microbiol 29:527–560

    CAS  PubMed  Google Scholar 

  • de Bekker C, Bruning O, Jonker MJ, Breit TM, Wosten HA (2011) Single cell transcriptomics of neighboring hyphae of Aspergillus niger. Genome Biol 12:R71. doi:10.1186/gb-2011-12-8-r71

    PubMed Central  PubMed  Google Scholar 

  • de Graaff LK, van den Broeck HC, van Ooijen AJJ, Visser J (1994) Regulation of the xylanase-encoding xlnA gene of Aspergilius tubigensis. Mol Microbiol 12:479–490. doi:10.1111/j.1365-2958.1994.tb01036.x

    PubMed  Google Scholar 

  • de Graaff LK, van den Broeck HC, Visser J (1992) Isolation and characterization of the Aspergillus niger. Curr Genet 22:21–27

    PubMed  Google Scholar 

  • de Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotech 16:839–842

    Google Scholar 

  • de Jongh WA, Nielsen J (2008) Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng 10:87–96. doi:10.1016/j.ymben.2007.11.002

    PubMed  Google Scholar 

  • de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MH, de Vries RP, de Castro Oliveira JV, Goldman GH (2011) Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnol Biofuels 4:40. doi:10.1186/1754-6834-4-40

    PubMed Central  PubMed  Google Scholar 

  • de Souza WR, Maitan-Alfenas GP, de Gouvêa PF, Brown NA, Savoldi M, Battaglia E, Goldman MH, de Vries RP, Goldman GH (2013) The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in d-xylose, l-arabinose and steam-exploded sugarcane bagasse. Fungal Genet Biol. doi:10.1016/j.fgb.2013.07.007

    PubMed  Google Scholar 

  • de Vries RP (2003) Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production. Appl Microbiol Biotechnol 61:10–20. doi:10.1007/s00253-002-1171-9

    PubMed  Google Scholar 

  • de Vries RP, Visser J, de Graaff LH (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150:281–285

    PubMed  Google Scholar 

  • Debets F, Swart K, Hoekstra RF, Bos CJ (1993) Genetic maps of eight linkage groups of Aspergillus niger based on mitotic mapping. Curr Genet 23:47–53

    CAS  PubMed  Google Scholar 

  • Decelle B, Tsang A, Storms RK (2004) Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1,4-beta-xylanases. Curr Genet 46:166–175. doi:10.1007/s00294-004-0520-x

    CAS  PubMed  Google Scholar 

  • Delmas S, Pullan ST, Gaddipati S, Kokolski M, Malla S, Blythe MJ, Ibbett R, Campbell M, Liddell S, Aboobaker A, Tucker GA, Archer DB (2012) Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing. PLoS Genet 8:e1002875. doi:10.1371/journal.pgen.1002875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Denison SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29:61–71. doi:10.1006/fgbi.2000.1188

    CAS  PubMed  Google Scholar 

  • Eibes GM, Lú-Chau TA, Ruiz-Dueñas FJ, Feijoo G, Martínez MJ, Martínez AT, Lema JM (2009) Effect of culture temperature on the heterologous expression of Pleurotus eryngii versatile peroxidase in Aspergillus hosts. Bioprocess Biosyst Eng 32:129–134. doi:10.1007/s00449-008-0231-7

    CAS  PubMed  Google Scholar 

  • Ferracin LM, Fier CB, Vieira ML, Monteiro-Vitorello CB, Varani Ade M, Rossi MM, Muller-Santos M, Taniwaki MH, Thie Iamanaka B, Fungaro MH (2012) Strain-specific polyketide synthase genes of Aspergillus niger. Int J Food Microbiol 155:137–145. doi:10.1016/j.ijfoodmicro.2012.01.020

    CAS  PubMed  Google Scholar 

  • Ferreira de Oliveira JM, van Passel MW, Schaap PJ, de Graaff LH (2010) Shotgun proteomics of Aspergillus niger microsomes upon d-xylose induction. Appl Environ Microbiol 76:4421–4429. doi:10.1128/AEM.00482-10

    CAS  PubMed  Google Scholar 

  • Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270. doi:10.1007/s00253-010-2672-6

    CAS  PubMed  Google Scholar 

  • Flipphi MJA, Visser J, van der Veen P, de Graaff LH (1994) Arabinase gene expression in Aspergillus niger: indications for coordinated regulation. Microbiology 140:2673–2682. doi:10.1099/00221287-140-10-2673

    CAS  PubMed  Google Scholar 

  • Fowler T, Berka RM, Ward M (1990) Regulation of the glaA gene of Aspergillus niger. Curr Genet 18:537–545

    CAS  PubMed  Google Scholar 

  • Franken AC, Lokman BC, Ram AF, Punt PJ, van den Hondel CA, de Weert S (2011) Heme biosynthesis and its regulation: towards understanding and improvement of heme biosynthesis in filamentous fungi. Appl Microbiol Biotechnol 91:447–460. doi:10.1007/s00253-011-3391-3

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franken AC, Lokman BC, Ram AF, van den Hondel CA, de Weert S, Punt PJ (2012) Analysis of the role of the Aspergillus niger aminolevulinic acid synthase (hemA) gene illustrates the difference between regulation of yeast and fungal haem- and sirohaem-dependent pathways. FEMS Microbiol Lett 335:104–112. doi:10.1111/j.1574-6968.2012.02655.x

    CAS  PubMed  Google Scholar 

  • Gems D, Johnstone IL, Clutterbuck AJ (1991) An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98:61–67

    CAS  PubMed  Google Scholar 

  • Gielesen B, van den Berg M (2013) Transformation of filamentous fungi in microtiter plate. V.K.Gupta et al. (eds), Laboratory Protocols in Fungal Biology: Current Methods in Fungal Biology, pp 343–348, Springer, New York

    Google Scholar 

  • Gielkens MM, Visser J, de Graaff LH (1997) Arabinoxylan degradation by fungi: characterization of the arabinoxylan-arabinofuranohydrolase encoding genes from Aspergillus niger and Aspergillus tubingensis. Curr Genet 31:22–29

    CAS  PubMed  Google Scholar 

  • Gil Girol C, Fisch KM, Heinekamp T, Günther S, Hüttel W, Piel J, Brakhage AA, Müller M (2012) Regio- and stereoselective oxidative phenol coupling in Aspergillus niger. Angew Chem Int Ed Engl 51:9788–9791. doi:10.1002/anie.201203603

    CAS  PubMed  Google Scholar 

  • Goedegebuur F, Fowler T, Phillips J, van der Kley P, van Solingen P, Dankmeyer L, Power S (2002) Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Curr Genet 41:89–98. doi:10.1007/s00294-002-0290-2

    CAS  PubMed  Google Scholar 

  • Goosen T, Bloemheuvel G, Christoph G, de Bie DA, Henk WJ, van Den B, Klaas S (1987) Transformation of Aspergillus niger using the homologous orotidine-5″-phosphate-decarboxylase gene. Curr Genet 11:499–503

    CAS  PubMed  Google Scholar 

  • Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11

    CAS  PubMed  Google Scholar 

  • Gruben BS, Zhou M, de Vries RP (2012) GalX regulates the d-galactose oxido-reductive pathway in Aspergillus niger. FEBS Lett 586:3980–3985. doi:10.1016/j.febslet.2012.09.029

    CAS  PubMed  Google Scholar 

  • Guillemette T, Ram AFJ, Carvalho NDSP, Joubert A, Simoneau P, Archer DB (2011) Methods for investigating the UPR in filamentous fungi. Methods Enzymol 490:1–29. doi:10.1016/B978-0-12-385114-7.00001-5

    CAS  PubMed  Google Scholar 

  • Guillemette T, van Peij N, Goosen T, Lanthaler K, Robson GD, van den Hondel CA, Stam H, Archer DB (2007) Genomic analysis of the secretion stress response in the enzyme-producing cell factory Aspergillus niger. BMC Genomics 8:158. doi:10.1186/1471-2164-8-158

    PubMed Central  PubMed  Google Scholar 

  • Halaouli S, Record E, Casalot L, Hamdi M, Sigoillot JC, Asther M, Lomascolo A (2006) Cloning and characterization of a tyrosinase gene from the white-rot fungus Pycnoporus sanguineus, and overproduction of the recombinant protein in Aspergillus niger. Appl Microbiol Biotechnol 70:580–589. doi:10.1007/s00253-005-0109-4

    CAS  PubMed  Google Scholar 

  • Hartingsveldt WV, Mattern IE, van Zeijl CMJ, Pouwels PH, van den Hondel CAMJJ (1987) Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol Gen Genet 206:71–75

    PubMed  Google Scholar 

  • Harvey AR, Ward M, Archer DB (2010) Identification and characterisation of eroA and ervA, encoding two putative thiol oxidases from Aspergillus niger. Gene 461:32–41. doi:10.1016/j.gene.2010.04.011

    CAS  PubMed  Google Scholar 

  • Hasper AA (2004) Functional analysis of the transcriptional activator XlnR from Aspergillus niger. Microbiology 150:1367–1375. doi:10.1099/mic.0.26557-0

    CAS  PubMed  Google Scholar 

  • Hasper AA, Visser J, de Graaff LH (2000) The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates d-xylose reductase gene expression. Mol Microbiol 36:193–200

    CAS  PubMed  Google Scholar 

  • Hynes MJ (1996) Genetic transformation of filamentous fungi. J Genet 75:297–311

    CAS  Google Scholar 

  • Jacobs DI, Olsthoorn MM, Maillet I, Akeroyd M, Breestraat S, Donkers S, van der Hoeven RA, van den Hondel CA, Kooistra R, Lapointe T, Menke H, Meulenberg R, Misset M, Muller WH, van Peij NN, Ram A, Rodriguez S, Roelofs MS, Roubos JA, van Tilborg MW, Verkleij AJ, Pel HJ, Stam H, Sagt CM (2009) Effective lead selection for improved protein production in Aspergillus niger based on integrated genomics. Fungal Genet Biol 46(Suppl 1):S141–S152. doi:10.1016/j.fgb.2008.08.012

    CAS  PubMed  Google Scholar 

  • James E, van Zyl W, van Zyl P, Gorgens J (2012) Recombinant hepatitis B surface antigen production in Aspergillus niger: evaluating the strategy of gene fusion to native glucoamylase. Appl Microbiol Biotechnol 96:385–394. doi:10.1007/s00253-012-4191-0

    CAS  PubMed  Google Scholar 

  • Jeenes DJ, Mackenzie DA, Archer DB (1994) Transcriptional and post-transcriptional events affect the production of secreted hen egg white lysozyme by Aspergillus niger. Transgenic Res 3:297–303

    CAS  PubMed  Google Scholar 

  • Jørgensen TR, Park J, Arentshorst M, van Welzen AM, Lamers G, Vankuyk PA, Damveld RA, van den Hondel CAM, Nielsen KF, Frisvad JC, Ram AFJ (2011) The molecular and genetic basis of conidial pigmentation in Aspergillus niger. Fungal Genet Biol 48:544–553. doi:10.1016/j.fgb.2011.01.005

    PubMed  Google Scholar 

  • Juge N, Svensson B, Williamson G (1998) Secretion, purification, and characterisation of barley alpha-amylase produced by heterologous gene expression in Aspergillus niger. Appl Microbiol Biotechnol 49:385–392

    CAS  PubMed  Google Scholar 

  • Kappeler SR, van den Brink HJ, Rahbek-Nielsen H, Farah Z, Puhan Z, Hansen EB, Johansen E (2006) Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk. Biochem Biophys Res Commun 342:647–654. doi:10.1016/j.bbrc.2006.02.014

    CAS  PubMed  Google Scholar 

  • Karnaukhova E, Ophir Y, Trinh L, Dalal N, Punt PJ, Golding B, Shiloach J (2007) Expression of human alpha1-proteinase inhibitor in Aspergillus niger. Microb Cell Fact 6:34. doi:10.1186/1475-2859-6-34

    PubMed Central  PubMed  Google Scholar 

  • Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koda A, Bogaki T, Minetoki T, Hirotsune M (2005) High expression of a synthetic gene encoding potato alpha-glucan phosphorylase in Aspergillus niger. J Biosci Bioeng 100:531–537. doi:10.1263/jbb.100.531

    CAS  PubMed  Google Scholar 

  • Koivistoinen OM, Richard P, Penttila M, Ruohonen L, Mojzita D (2012) Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive d-galactose pathway and essential for d-sorbitol catabolism. FEBS Lett 586:378–383. doi:10.1016/j.febslet.2012.01.004

    CAS  PubMed  Google Scholar 

  • Krasevec N, van de Hondel CA, Komel R (2000a) Expression of human lymphotoxin alpha in Aspergillus niger. Pflugers Arch 440:R83–R85

    CAS  PubMed  Google Scholar 

  • Krasevec N, van den Hondel CA, Komel R (2000b) Can hTNF-alpha be successfully produced and secreted in filamentous fungus Aspergillus niger? Pflugers Arch 439:R84–R86

    CAS  PubMed  Google Scholar 

  • Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Muller WH, Dijksterhuis J, Wosten HA (2013a) Development in Aspergillus. Stud Mycol 74:1–29. doi:10.3114/sim0006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krijgsheld P, Nitsche BM, Post H, Levin AM, Müller WH, Heck AJR, Ram AFJ, Altelaar AFM, Wösten HAB (2013b) Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger. J Proteome Res 12:1808–1819. doi:10.1021/pr301154w

    CAS  PubMed  Google Scholar 

  • Kwon MJ, Arentshorst M, Roos ED, van den Hondel CA, Meyer V, Ram AF (2011) Functional characterization of Rho GTPases in Aspergillus niger uncovers conserved and diverged roles of Rho proteins within filamentous fungi. Mol Microbiol 79:1151–1167. doi:10.1111/j.1365-2958.2010.07524.x

    CAS  PubMed  Google Scholar 

  • Lee BN, Adams TH (1994) Overexpression of flbA, an early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol Microbiol 14:323–334

    CAS  PubMed  Google Scholar 

  • Lee BN, Adams TH (1996) FluG and flbA function interdependently to initiate conidiophore development in Aspergillus nidulans through brlA beta activation. EMBO J 15:299–309

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lenouvel F, Fraissinet-Tachet L, van de Vondervoort PJ, Visser J (2001) Isolation of UV-induced mutations in the areA nitrogen regulatory gene of Aspergillus niger, and construction of a disruption mutant. Mol Genet Genomics 266:42–47

    CAS  PubMed  Google Scholar 

  • Li A, Pfelzer N, Zuijderwijk R, Punt P (2012) Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 12:57. doi:10.1186/1472-6750-12-57

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011a) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48:602–611, DOI: http://dx.doi.org/10.1016/j.fgb.2011.01.013

    CAS  PubMed  Google Scholar 

  • Li J, Luo Y, Lee JK, Zhao H (2011b) Cloning and characterization of a type III polyketide synthase from Aspergillus niger. Bioorg Med Chem Lett 21:6085–6089. doi:10.1016/j.bmcl.2011.08.058

    CAS  PubMed  Google Scholar 

  • Li W, Chen G, Gu L, Zeng W, Liang Z (2013) Genome shuffling of Aspergillus niger for improving transglycosylation activity. Appl Biochem Biotechnol. doi:10.1007/s12010-013-0421-x

    PubMed Central  Google Scholar 

  • Lu X, Sun J, Nimtz M, Wissing J, Zeng AP, Rinas U (2010) The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9:23. doi:10.1186/1475-2859-9-23

    PubMed Central  PubMed  Google Scholar 

  • Mach-Aigner AR, Omony J, Jovanovic B, van Boxtel AJ, de Graaff LH (2012) d-Xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in Aspergillus niger. Appl Environ Microbiol 78:3145–3155. doi:10.1128/AEM.07772-11

    PubMed Central  CAS  PubMed  Google Scholar 

  • MacKenzie DA, Kraunsoe JA, Chesshyre JA, Lowe G, Komiyama T, Fuller RS, Archer DB (1998) Aberrant processing of wild-type and mutant bovine pancreatic trypsin inhibitor secreted by Aspergillus niger. J Biotechnol 63:137–146

    CAS  PubMed  Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. Adv Fungal Biotechnol Ind Agr Med 24:307–340

    Google Scholar 

  • Martens-Uzunova ES, Schaap PJ (2009) Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics. Fungal Genet Biol 46(Suppl 1):S170–S179

    CAS  PubMed  Google Scholar 

  • Martens-Uzunova ES, Zandleven JS, Benen JA, Awad H, Kools HJ, Beldman G, Voragen AG, Van den Berg JA, Schaap PJ (2006) A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem J 400:43–52. doi:10.1042/BJ20060703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Master ER, Zheng Y, Storms R, Tsang A, Powlowski J (2008) A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: recombinant expression, purification and characterization. Biochem J 411:161–170. doi:10.1042/BJ20070819

    CAS  PubMed  Google Scholar 

  • Mattern JE, Punt PJ, van den Hondel CAMJJ (1988) A vector of Aspergillus transformation conferring phleomycin resistance. Fungal Genet Newslett 35:25

    Google Scholar 

  • Meijer S, de Jongh WA, Olsson L, Nielsen J (2009) Physiological characterisation of acuB deletion in Aspergillus niger. Appl Microbiol Biotechnol 84:157–167. doi:10.1007/s00253-009-2027-3

    CAS  PubMed  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi – progress, obstacles and future trends. Biotechnol Adv 26:177–185, DOI: http://dx.doi.org/10.1016/j.biotechadv.2007.12.001

    CAS  PubMed  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775. doi:10.1016/j.jbiotec.2006.12.021

    CAS  PubMed  Google Scholar 

  • Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17. doi:10.1007/s00294-005-0578-0

    CAS  PubMed  Google Scholar 

  • Mikosch T, Klemm P, Gassen HG, van den Hondel CA, Kemme M (1996) Secretion of active human mucus proteinase inhibitor by Aspergillus niger after KEX2-like processing of a glucoamylase-inhibitor fusion protein. J Biotechnol 52:97–106

    CAS  PubMed  Google Scholar 

  • Mojzita D, Koivistoinen OM, Maaheimo H, Penttila M, Ruohonen L, Richard P (2012) Identification of the galactitol dehydrogenase, LadB, that is part of the oxido-reductive d-galactose catabolic pathway in Aspergillus niger. Fungal Genet Biol 49:152–159. doi:10.1016/j.fgb.2011.11.005

    CAS  PubMed  Google Scholar 

  • Mulder HJ, Saloheimo M, Penttila M, Madrid SM (2004) The transcription factor HACA mediates the unfolded protein response in Aspergillus niger, and up-regulates its own transcription. Mol Genet Genomics 271:130–140. doi:10.1007/s00438-003-0965-5

    CAS  PubMed  Google Scholar 

  • Murphy C, Powlowski J, Wu M, Butler G, Tsang A (2011) Curation of characterized glycoside hydrolases of fungal origin. Database (Oxford) 2011:bar020. DOI: 10.1093/database/bar020

    Google Scholar 

  • Nielsen BR, Lehmbeck J, Frandsen TP (2002) Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Protein Expr Purif 26:1–8

    CAS  PubMed  Google Scholar 

  • Nikolaev I, Mathieu M, van de Vondervoort P, Visser J, Felenbok B (2002) Heterologous expression of the Aspergillus nidulans alcR-alcA system in Aspergillus niger. Fungal Genet Biol 37:89–97

    CAS  PubMed  Google Scholar 

  • Nitsche BM, Jorgensen TR, Akeroyd M, Meyer V, Ram AF (2012) The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genomics 13:380. doi:10.1186/1471-2164-13-380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Novodvorska M, Hayer K, Pullan ST, Wilson R, Blythe MJ, Stam H, Stratford M, Archer DB (2013) Trancriptional landscape of Aspergillus niger at breaking of conidial dormancy revealed by RNA-sequencing. BMC Genomics 14:246. doi:10.1186/1471-2164-14-246

    PubMed Central  CAS  PubMed  Google Scholar 

  • Omony J, de Graaff LH, van Straten G, van Boxtel AJ (2011) Modeling and analysis of the dynamic behavior of the XlnR regulon in Aspergillus niger. BMC Syst Biol 5(Suppl 1):S14. doi:10.1186/1752-0509-5-S1-S14

    PubMed Central  PubMed  Google Scholar 

  • Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M (1994) Transformation of Intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem 58:2224–2227

    CAS  PubMed  Google Scholar 

  • Pachlinger R, Mitterbauer R, Adam G, Strauss J (2005) Metabolically independent and accurately adjustable Aspergillus sp. expression system. Appl Environ Microbiol 71:672–678. doi:10.1128/AEM.71.2.672-678.2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Papadopoulou S, Sealy-Lewis HM (1999) The Aspergillus niger acuA and acuB genes correspond to the facA and facB genes in Aspergillus nidulans. FEMS Microbiol Lett 178:35–37

    CAS  PubMed  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wosten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231. doi:10.1038/nbt1282

    PubMed  Google Scholar 

  • Piddington CS, Houston CS, Paloheimo M, Cantrell M, Miettinen-Oinonen A, Nevalainen H, Rambosek J (1993) The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene 133:55–62

    CAS  PubMed  Google Scholar 

  • Pisanelli I, Kujawa M, Gschnitzer D, Spadiut O, Seiboth B, Peterbauer C (2010) Heterologous expression of an Agaricus meleagris pyranose dehydrogenase-encoding gene in Aspergillus spp. and characterization of the recombinant enzyme. Appl Microbiol Biotechnol 86:599–606. doi:10.1007/s00253-009-2308-x

    CAS  PubMed  Google Scholar 

  • Pluddemann A, Van Zyl WH (2003) Evaluation of Aspergillus niger as host for virus-like particle production, using the hepatitis B surface antigen as a model. Curr Genet 43:439–446. doi:10.1007/s00294-003-0409-0

    PubMed  Google Scholar 

  • Poulsen L, Andersen MR, Lantz AE, Thykaer J (2012) Identification of a transcription factor controlling pH-dependent organic acid response in Aspergillus niger. PLoS One 7:e50596. doi:10.1371/journal.pone.0050596

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prathumpai W, Flitter S, McIntyre M, Nielsen J (2004) Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus. Appl Microbiol Biotechnol 65:714–719. doi:10.1007/s00253-004-1699-y

    CAS  PubMed  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    CAS  PubMed  Google Scholar 

  • Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45:1591–1599. doi:10.1016/j.fgb.2008.09.007

    CAS  PubMed  Google Scholar 

  • Record E, Punt PJ, Chamkha M, Labat M, van Den Hondel CA, Asther M (2002) Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme. Eur J Biochem 269:602–609

    CAS  PubMed  Google Scholar 

  • Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Sumner IG, Archer DB (1992) Heterologous gene expression in Aspergillus niger: a glucoamylase-porcine pancreatic prophospholipase A2 fusion protein is secreted and processed to yield mature enzyme. Gene 122:155–161

    CAS  PubMed  Google Scholar 

  • Roberts IN, Oliver RP, Punt PJ, van den Hondel CA (1989) Expression of the Escherichia coli beta-glucuronidase gene in industrial and phytopathogenic filamentous fungi. Curr Genet 15:177–180

    CAS  PubMed  Google Scholar 

  • Rodríguez E, Ruiz-Dueñas FJ, Kooistra R, Ram A, Martínez ÁT, Martínez MJ (2008) Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J Biotechnol 134:9–19, DOI: http://dx.doi.org/10.1016/j.jbiotec.2007.12.008

    PubMed  Google Scholar 

  • Rose SH, van Zyl WH (2002) Constitutive expression of the Trichoderma reesei beta-1,4-xylanase gene (xyn2) and the beta-1,4-endoglucanase gene (egl) in Aspergillus niger in molasses and defined glucose media. Appl Microbiol Biotechnol 58:461–468

    CAS  PubMed  Google Scholar 

  • Roth AFJ, Dersch P (2010) A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger. Appl Microbiol Biotechnol 86:659–670. doi:10.1007/s00253-009-2252-9

    CAS  PubMed  Google Scholar 

  • Sagt CM, ten Haaft PJ, Minneboo IM, Hartog MP, Damveld RA, van der Laan JM, Akeroyd M, Wenzel TJ, Luesken FA, Veenhuis M, van der Klei I, de Winde JH (2009) Peroxicretion: a novel secretion pathway in the eukaryotic cell. BMC Biotechnol 9:48. doi:10.1186/1472-6750-9-48

    PubMed Central  PubMed  Google Scholar 

  • Salovuori I, Makarow M, Rauvala H, Knowles J, Kaariainen L (1987) Low molecular weight high-mannose type glycans in a secreted protein of the filamentous fungus Trichoderma reesei. Nat Biotech 5:152–156

    CAS  Google Scholar 

  • Sandgren M, Gualfetti PJ, Shaw A, Gross LS, Saldajeno M, Day AG, Jones TA, Mitchinson C (2003) Comparison of family 12 glycoside hydrolases and recruited substitutions important for thermal stability. Protein Sci 12:848–860. doi:10.1110/ps.0237703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schachtschabel D, Arentshorst M, Lagendijk EL, Ram AF (2012) Vacuolar H(+)-ATPase plays a key role in cell wall biosynthesis of Aspergillus niger. Fungal Genet Biol 49:284–293. doi:10.1016/j.fgb.2011.12.008

    CAS  PubMed  Google Scholar 

  • Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW (2002) On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol 59:426–435. doi:10.1007/s00253-002-1032-6

    CAS  PubMed  Google Scholar 

  • Scott-Craig JS, Borrusch MS, Banerjee G, Harvey CM, Walton JD (2011) Biochemical and molecular characterization of secreted alpha-xylosidase from Aspergillus niger. J Biol Chem 286:42848–42854. doi:10.1074/jbc.M111.307397

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sealy-Lewis HM, Fairhurst V (1998) Isolation of mutants deficient in acetyl-CoA synthetase and a possible regulator of acetate induction in Aspergillus niger. Microbiology 144(Pt 7):1895–1900

    CAS  PubMed  Google Scholar 

  • Semova N, Storms R, John T, Gaudet P, Ulycznyj P, Min XJ, Sun J, Butler G, Tsang A (2006) Generation, annotation, and analysis of an extensive Aspergillus niger EST collection. BMC Microbiol 6:7. doi:10.1186/1471-2180-6-7

    PubMed Central  PubMed  Google Scholar 

  • Smith DJ, Burnham MK, Edwards J, Earl AJ, Turner G (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from penicillum chrysogenum. Biotechnology (N Y) 8:39–41

    CAS  Google Scholar 

  • Spencer A, Morozov-Roche LA, Noppe W, MacKenzie DA, Jeenes DJ, Joniau M, Dobson CM, Archer DB (1999) Expression, purification, and characterization of the recombinant calcium-binding equine lysozyme secreted by the filamentous fungus Aspergillus niger: comparisons with the production of hen and human lysozymes. Protein Expr Purif 16:171–180. doi:10.1006/prep.1999.1036

    CAS  PubMed  Google Scholar 

  • Srivastava S, Luqman S, Khan F, Chanotiya CS, Darokar MP (2010) Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger. Bioinformation 4:320–325

    PubMed Central  PubMed  Google Scholar 

  • Storms R, Zheng Y, Li H, Sillaots S, Martinez-Perez A, Tsang A (2005) Plasmid vectors for protein production, gene expression and molecular manipulations in Aspergillus niger. Plasmid 53:191–204, DOI: http://dx.doi.org/10.1016/j.plasmid.2004.10.001

    CAS  PubMed  Google Scholar 

  • Stricker AR, Mach RL, de Graaff LH (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78:211–220. doi:10.1007/s00253-007-1322-0

    CAS  PubMed  Google Scholar 

  • Svetina M, Krasevec N, Gaberc-Porekar V, Komel R (2000) Expression of catalytic subunit of bovine enterokinase in the filamentous fungus Aspergillus niger. J Biotechnol 76:245–251. doi:10.1016/S0168-1656(99)00191-1

    CAS  PubMed  Google Scholar 

  • Tamayo-Ramos JA, van Berkel WJ, de Graaff LH (2012) Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microb Cell Fact 11:165. doi:10.1186/1475-2859-11-165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamayo Ramos JA, Barends S, Verhaert RM, de Graaff LH (2011) The Aspergillus niger multicopper oxidase family: analysis and overexpression of laccase-like encoding genes. Microb Cell Fact 10:78

    PubMed Central  CAS  Google Scholar 

  • Tambor JH, Ren H, Ushinsky S, Zheng Y, Riemens A, St-Francois C, Tsang A, Powlowski J, Storms R (2012) Recombinant expression, activity screening and functional characterization identifies three novel endo-1,4-beta-glucanases that efficiently hydrolyse cellulosic substrates. Appl Microbiol Biotechnol 93:203–214. doi:10.1007/s00253-011-3419-8

    PubMed  Google Scholar 

  • Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol 46(Suppl 1):S153–S160

    CAS  PubMed  Google Scholar 

  • Turbe-Doan A, Arfi Y, Record E, Estrada-Alvarado I, Levasseur A (2013) Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl Microbiol Biotechnol 97:4873–4885. doi:10.1007/s00253-012-4355-y

    CAS  PubMed  Google Scholar 

  • Turnbull IF, Smith DR, Sharp PJ, Cobon GS, Hynes MJ (1990) Expression and secretion in Aspergillus nidulans and Aspergillus niger of a cell surface glycoprotein from the cattle tick, Boophilus microplus, by using the fungal amdS promoter system. Appl Environ Microbiol 56:2847–2852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Unkles SE, Campbell EI, Carrez D, Grieve C, Contreras R, Fiers W, Van den Hondel CAMJJ, Kinghorn JR (1989) Transformation of Aspergillus niger with the homologous nitrate reductase gene. Gene 78:157–166, DOI: http://dx.doi.org/10.1016/0378-1119(89)90323-5

    CAS  PubMed  Google Scholar 

  • Van Den Hombergh JP, MacCabe AP, Van De Vondervoort PJ, Visser J (1996) Regulation of acid phosphatases in an Aspergillus niger pacC disruption strain. Mol Gen Genet 251:542–550

    PubMed  Google Scholar 

  • van Leeuwen MR, Krijgsheld P, Bleichrodt R, Menke H, Stam H, Stark J, Wosten HA, Dijksterhuis J (2013) Germination of conidia of Aspergillus niger is accompanied by major changes in RNA profiles. Stud Mycol 74:59–70. doi:10.3114/sim0009

    PubMed Central  PubMed  Google Scholar 

  • van Munster JM, van der Kaaij RM, Dijkhuizen L, van der Maarel MJ (2012) Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology 158:2168–2179. doi:10.1099/mic.0.054650-0

    PubMed  Google Scholar 

  • van Peij NN, Gielkens MM, de Vries RP, Visser J, de Graaff LH (1998a) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619

    PubMed Central  PubMed  Google Scholar 

  • van Peij NN, Visser J, de Graaff LH (1998b) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27:131–142

    PubMed  Google Scholar 

  • van Zyl PJ, Moodley V, Rose SH, Roth RL, van Zyl WH (2009) Production of the Aspergillus aculeatus endo-1,4-beta-mannanase in A. niger. J Ind Microbiol Biotechnol 36:611–617. doi:10.1007/s10295-009-0551-x

    CAS  PubMed  Google Scholar 

  • vanKuyk PA, Benen JA, Wosten HA, Visser J, de Vries RP (2012) A broader role for AmyR in Aspergillus niger: regulation of the utilisation of d-glucose or d-galactose containing oligo- and polysaccharides. Appl Microbiol Biotechnol 93:285–293. doi:10.1007/s00253-011-3550-6

    PubMed Central  PubMed  Google Scholar 

  • Verdoes JC, Calil MR, Punt PJ, Debets F, Swart K, Stouthamer AH, van den Hondel CA (1994a) The complete karyotype of Aspergillus niger: the use of introduced electrophoretic mobility variation of chromosomes for gene assignment studies. Mol Gen Genet 244:75–80

    CAS  PubMed  Google Scholar 

  • Verdoes JC, Punt PJ, van der Berg P, Debets F, Stouthamer AH, van den Hondel CA (1994b) Characterization of an efficient gene cloning strategy for Aspergillus niger based on an autonomously replicating plasmid: cloning of the nicB gene of A. niger. Gene 146:159–165

    CAS  PubMed  Google Scholar 

  • Ward M, Kodama KH, Wilson LJ (1989) Transformation ofAspergillus awamori and A. niger by electroporation. Exp Mycol 13:289–293, DOI: http://dx.doi.org/10.1016/0147-5975(89)90050-9

    Google Scholar 

  • Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N, Gieswein C, Park M, Wang H (2004) Characteri-zation of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward M, Wilson LJ, Carmona ICL, Turner G (1988) The oliC3 gene of Aspergillus niger: isolation, sequence and use as a selectable marker for transformation. Curr Genet 14:37–42

    CAS  PubMed  Google Scholar 

  • Ward M, Wilson LJ, Kodama KH, Rey MW, Berka RM (1990) Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Nat Biotech 8:435–440

    CAS  Google Scholar 

  • Wiebe MG, Karandikar A, Robson GD, Trinci AP, Candia JL, Trappe S, Wallis G, Rinas U, Derkx PM, Madrid SM, Sisniega H, Faus I, Montijn R, van den Hondel CA, Punt PJ (2001) Production of tissue plasminogen activator (t-PA) in Aspergillus niger. Biotechnol Bioeng 76:164–174

    CAS  PubMed  Google Scholar 

  • Wright JC, Sugden D, Francis-McIntyre S, Riba-Garcia I, Gaskell SJ, Grigoriev IV, Baker SE, Beynon RJ, Hubbard SJ (2009) Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics 10:61. doi:10.1186/1471-2164-10-61

    PubMed Central  PubMed  Google Scholar 

  • Yuan XL, Goosen C, Kools H, van der Maarel MJ, van den Hondel CA, Dijkhuizen L, Ram AF (2006) Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology 152:3061–3073. doi:10.1099/mic.0.29051-0

    CAS  PubMed  Google Scholar 

  • Yuan XL, Roubos JA, van den Hondel CA, Ram AF (2008a) Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics 279:11–26. doi:10.1007/s00438-007-0290-5

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan XL, van der Kaaij RM, van den Hondel CA, Punt PJ, van der Maarel MJ, Dijkhuizen L, Ram AF (2008b) Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 279:545–561. doi:10.1007/s00438-008-0332-7

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zabala AO, Xu W, Chooi Y-H, Tang Y (2012) Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chem Biol 19:1049–1059. doi:10.1016/j.chembiol.2012.07.004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang JX, Pan J, Guan GH, Li Y, Xue W, Tang GM, Wang AQ, Wang HM (2008) Expression and high-yield production of extremely thermostable bacterial xylanaseB in Aspergillus niger. Enzyme Microb Technol 43:513–516, DOI: 10.1016/j.enzmictec.2008.07.010

    CAS  Google Scholar 

  • Zhao W, Zheng J, Zhou HB (2011) A thermotolerant and cold-active mannan endo-1,4-beta-mannosidase from Aspergillus niger CBS 513.88: Constitutive overexpression and high-density fermentation in Pichia pastoris. Bioresour Technol 102:7538–7547. doi:10.1016/j.biortech.2011.04.070

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Genome Canada, Génome Québec, and the NSERC Strategic Bioconversion Network. We thank Dr. Ian Reid for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Tsang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsang, A., Bellemare, A., Darmond, C., Bakhuis, J. (2015). Genetic and Genomic Manipulations in Aspergillus niger . In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 2. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10503-1_20

Download citation

Publish with us

Policies and ethics