Boutilier, C., Zemel, R.S., Marlin, B.: Active collaborative filtering. In: Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2003), Acapulco (2003)
Google Scholar
Braunhofer, M., Elahi, M., Ge, M., Ricci, F.: Context dependent preference acquisition with personality-based active learning in mobile recommender systems. In: Zaphiris, P., Ioannou, A. (eds.) LCT 2014, Part II. LNCS, vol. 8524, pp. 105–116. Springer, Heidelberg (2014)
CrossRef
Google Scholar
Carenini, G., Smith, J., Poole, D.: Towards more conversational and collaborative recommender systems. In: Proceedings of the 8th International Conference on Intelligent User Interfaces, IUI 2003, pp. 12–18. ACM, New York (2003)
Google Scholar
Desrosiers, C., Karypis, G.: A comprehensive survey of neighborhood-based recommendation methods. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 107–144. Springer (2011)
Google Scholar
Elahi, M., Braunhofer, M., Ricci, F., Tkalcic, M.: Personality-based active learning for collaborative filtering recommender systems. In: Baldoni, M., Baroglio, C., Boella, G., Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 360–371. Springer, Heidelberg (2013)
Google Scholar
Elahi, M., Repsys, V., Ricci, F.: Rating elicitation strategies for collaborative filtering. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 160–171. Springer, Heidelberg (2011)
CrossRef
Google Scholar
Elahi, M., Ricci, F., Rubens, N.: Adapting to natural rating acquisition with combined active learning strategies. In: Chen, L., Felfernig, A., Liu, J., Raś, Z.W. (eds.) ISMIS 2012. LNCS, vol. 7661, pp. 254–263. Springer, Heidelberg (2012)
CrossRef
Google Scholar
Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACM Transactions on Intelligent Systems and Technology 5(1) (2014)
Google Scholar
Golbandi, N., Koren, Y., Lempel, R.: On bootstrapping recommender systems. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1805–1808. ACM, New York (2010)
Google Scholar
Golbandi, N., Koren, Y., Lempel, R.: Adaptive bootstrapping of recommender systems using decision trees. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, WSDM 2011, pp. 595–604. ACM, New York (2011)
Google Scholar
Harpale, A.S., Yang, Y.: Personalized active learning for collaborative filtering. In: SIGIR 2008: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 91–98. ACM, New York (2008)
Google Scholar
He, L., Liu, N.N., Yang, Q.: Active dual collaborative filtering with both item and attribute feedback. In: AAAI (2011)
Google Scholar
Jin, R., Si, L.: A Bayesian approach toward active learning for collaborative filtering. In: Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence, UAI 2004, Banff, Canada, July 7-11, pp. 278–285 (2004)
Google Scholar
Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Active learning for aspect model in recommender systems. In: CIDM, pp. 162–167. IEEE (2011)
Google Scholar
Karimi, R., Freudenthaler, C., Nanopoulos, A., Schmidt-Thieme, L.: Non-myopic active learning for recommender systems based on matrix factorization. In: IRI, pp. 299–303. IEEE Systems, Man, and Cybernetics Society (2011)
Google Scholar
Mello, C.E., Aufaure, M.-A., Zimbrao, G.: Active learning driven by rating impact analysis. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 341–344. ACM, New York (2010)
CrossRef
Google Scholar
Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., Mcnee, S.M., Konstan, J.A., Riedl, J.: Getting to know you: Learning new user preferences in recommender systems. In: Proceedings of the 2002 International Conference on Intelligent User Interfaces, IUI 2002, pp. 127–134. ACM Press (2002)
Google Scholar
Rashid, A.M., Karypis, G., Riedl, J.: Learning preferences of new users in recommender systems: an information theoretic approach. SIGKDD Explor. Newsl. 10, 90–100 (2008)
CrossRef
Google Scholar
Rubens, N., Kaplan, D., Sugiyama, M.: Active learning in recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 735–767. Springer (2011)
Google Scholar
Rubens, N., Sugiyama, M.: Influence-based collaborative active learning. In: Proceedings of the 2007 ACM Conference on Recommender Systems, RecSys 2007, pp. 145–148. ACM, New York (2007)
CrossRef
Google Scholar
Zhou, K., Yang, S.-H., Zha, H.: Functional matrix factorizations for cold-start recommendation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 315–324. ACM, New York (2011)
Google Scholar