Skip to main content

Investigating Binary Black Hole Mergers with Principal Component Analysis

  • Conference paper
  • First Online:

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 40))

Abstract

Despite recent progress in numerical simulations of the coalescence of binary black hole systems, highly asymmetric spinning systems and the construction of accurate physical templates remain challenging and computationally expensive. We explore the feasibility of a prompt and robust test of whether the signals exhibit evidence for generic features that can educate new simulations. We form catalogs of numerical relativity waveforms with distinct physical effects and compute the relative probability that a gravitational wave signal belongs to each catalog. We introduce an algorithm designed to perform this task for coalescence signals using principal component analysis of waveform catalogs and Bayesian model selection and demonstrate its effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.einsteintoolkit.org.

  2. 2.

    http://www.cactuscode.org.

References

  • J. Aasi et al., Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network. Phys. Rev. D 88, 062001 (2013a)

    Article  ADS  Google Scholar 

  • J. Aasi et al., Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories. Preprint arXiv:1304.0670 (2013b)

    Google Scholar 

  • J. Abadie et al., All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys. Rev. D 85, 122007 (2012)

    Article  ADS  Google Scholar 

  • F. Acernese et al., Virgo Technical Report VIR-0027A-09. https://tds.ego-gw.it/ql/?c=6589 (2009)

  • P. Ajith et al., The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Class. Quantum Grav. 29, 124001 (2012)

    Article  ADS  Google Scholar 

  • N. Andersson et al. The Transient Gravitational-Wave Sky. Class. Quantum Grav. 30, 193002 (2013)

    Article  ADS  Google Scholar 

  • J. Clark et al., An evidence based search method for gravitational waves from neutron star ring-downs. Phys. Rev. D 76, 043003 (2007)

    Article  ADS  Google Scholar 

  • G.M. Harry, Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084006 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • I.S. Heng, Rotating stellar core-collapse waveform decomposition: a principal component analysis approach. Class. Quantum Grav. 26, 105005 (2009)

    Article  ADS  Google Scholar 

  • I. Hinder et al., Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Class. Quantum Grav. 31, 025012 (2014)

    Article  ADS  Google Scholar 

  • J. Logue et al., Inferring core-collapse supernova physics with gravitational waves. Phys. Rev. D 86, 044023 (2012)

    Article  ADS  Google Scholar 

  • C.O. Lousto, Y. Zlochower, Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity. Phys. Rev. Lett. 106, 041101 (2011)

    Article  ADS  Google Scholar 

  • G. Lovelace et al., Accurate gravitational waveforms for binary-black-hole mergers with nearly extremal spins. Class. Quantum Grav. 29, 045003 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • A.H. Mroue et al., A catalog of 174 binary black-hole simulations for gravitational-wave astronomy. Phys. Rev. Lett. 111, 241104 (2013)

    Article  ADS  Google Scholar 

  • L. Pekowsky et al., Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame. Phys. Rev. D 88(2), 024040 (2013)

    Google Scholar 

  • F. Pretorius, Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • C. Reisswig, D. Pollney, Notes on the integration of numerical relativity waveforms. Class. Quantum Grav. 28, 195015 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • C. Röver et al., Bayesian reconstruction of gravitational wave burst signals from simulations of rotating stellar core collapse and bounce. Phys. Rev. D 80, 102004 (2009)

    Article  ADS  Google Scholar 

  • E. Schnetter et al., Evolutions in 3D numerical relativity using fixed mesh refinement. Class. Quantum Grav. 21, 1465–1488 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • K. Somiya, Detector configuration of KAGRA: The Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 29, 124007 (2012)

    Article  ADS  Google Scholar 

  • K.S Thorne, in 300 Years of Gravitation, ed. by S. W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  • B. Vaishnav et al., Matched filtering of numerical relativity templates of spinning binary black holes. Phys. Rev. D 76, 084020 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF grants PHY-0955773 and 0955825, SUPA and STFC UK. Simulations were supported by NSF XSEDE PHY120016 andPHY090030, and CRA Cygnus cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Clark .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Clark, J. et al. (2015). Investigating Binary Black Hole Mergers with Principal Component Analysis. In: Sopuerta, C. (eds) Gravitational Wave Astrophysics. Astrophysics and Space Science Proceedings, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-10488-1_24

Download citation

Publish with us

Policies and ethics