Skip to main content

Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

  • Conference paper
  • First Online:

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 40))

Abstract

Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Einstein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To understand matter’s effect on neutron star waveforms see Read et al. (2013) for binary neutron stars and Andersson and Kokkotas (1998) for isolated neutron stars.

  2. 2.

    Note that the final mass is constrained to be less than one. The mass and spin are computed using isolated horizons (Dreyer et al. 2003).

References

  • J. Aasi et al., Prospects for localization of gravitational wave transients by the Advanced LIGO and Advanced Virgo observatories (2013a). Preprint. arXiv:1304.0670

    Google Scholar 

  • J. Aasi et al., Search for gravitational waves from binary black hole inspiral, merger and ringdown in LIGO-Virgo data from 2009–2010. Phys. Rev. D87, 022002 (2013b)

    ADS  Google Scholar 

  • J. Aasi et al., The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations. Class. Quantum Grav. 31, 115004 (2014)

    Article  ADS  Google Scholar 

  • J. Abadie et al., All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run. Phys. Rev. D 85, 122007 (2012a)

    Article  ADS  Google Scholar 

  • J. Abadie et al., Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3. Phys. Rev. D85, 082002 (2012b)

    ADS  Google Scholar 

  • A.M. Abrahams et al., Gravitational wave extraction and outer boundary conditions by perturbative matching. Phys. Rev. Lett. 80, 1812–1815 (1998)

    Article  ADS  Google Scholar 

  • F. Acernese et al., Virgo Technical Report VIR-0027A-09 (2009). https://tds.ego-gw.it/ql/?c=6589

  • P. Ajith, S. Babak, Y. Chen, M. Hewitson, B. Krishnan et al., Phenomenological template family for black-hole coalescence waveforms. Class. Quantum. Grav. 24, S689–S700 (2007)

    Article  ADS  MATH  Google Scholar 

  • P. Ajith et al., The NINJA-2 catalog of hybrid post-Newtonian/numerical-relativity waveforms for non-precessing black-hole binaries. Class. Quantum Grav. 29, 124001 (2012)

    Article  ADS  Google Scholar 

  • M. Alcubierre, W. Benger, B. Bruegmann, G. Lanfermann, L. Nerger et al., The 3-D grazing collision of two black holes. Phys. Rev. Lett. 87, 271103 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Alcubierre, B. Bruegmann, P. Diener, M. Koppitz, D. Pollney et al. Gauge conditions for long term numerical black hole evolutions without excision. Phys. Rev. D67, 084023 (2003)

    ADS  Google Scholar 

  • N. Andersson, K.D. Kokkotas, Towards gravitational wave asteroseismology. Mon. Not. R. Astron. Soc. 299, 1059–1068 (1998)

    Article  ADS  Google Scholar 

  • N. Andersson et al., The transient gravitational-wave sky. Class. Quantum Grav. 30, 193002 (2013)

    Article  ADS  Google Scholar 

  • B. Aylott, J.G. Baker, W.D. Boggs, M. Boyle, P.R. Brady et al., Status of NINJA: the Numerical INJection Analysis project. Class. Quantum Grav. 26, 114008 (2009a)

    Article  ADS  Google Scholar 

  • B. Aylott, J.G. Baker, W.D. Boggs, M. Boyle, P.R. Brady et al., Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Class. Quantum Grav. 26, 165008 (2009b)

    Article  ADS  Google Scholar 

  • J.G. Baker, M. Campanelli, C.O. Lousto, The Lazarus project: a pragmatic approach to binary black hole evolutions. Phys. Rev. D65, 044001 (2002)

    ADS  Google Scholar 

  • J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Gravitational wave extraction from an inspiraling configuration of merging black holes. Phys. Rev. Lett. 96, 111102 (2006)

    Article  ADS  Google Scholar 

  • J.G. Baker, S.T. McWilliams, J.R. van Meter, J. Centrella, D.-I. Choi et al., Binary black hole late inspiral: simulations for gravitational wave observations. Phys. Rev. D75, 124024 (2007)

    ADS  Google Scholar 

  • T. Baumgarte, P. Brady, J.D.E. Creighton, L. Lehner, F. Pretorius et al., Learning about compact binary merger: the Interplay between numerical relativity and gravitational-wave astronomy. Phys. Rev. D77, 084009 (2008)

    ADS  Google Scholar 

  • E. Berti, V. Cardoso, M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions. Phys. Rev. D 73, 024013 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • E. Berti, V. Cardoso, J.A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, B. Brügmann, Inspiral, merger, and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007)

    Article  ADS  Google Scholar 

  • P.R. Brady, J.D.E. Creighton, K.S. Thorne, Computing the merger of black hole binaries: the IBBH problem. Phys. Rev. D58, 061501 (1998)

    ADS  Google Scholar 

  • S. Brandt, B. Bruegmann, A simple construction of initial data for multiple black holes. Phys. Rev. Lett. 78, 3606–3609 (1997)

    Article  ADS  Google Scholar 

  • S. Brandt, R. Correll, R. Gomez, M. Huq, P. Laguna et al., Grazing collisions of black holes via the excision of singularities. Phys. Rev. Lett. 85, 5496–5499 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • B. Bruegmann, Binary black hole mergers in 3-d numerical relativity. Int. J. Mod. Phys. D8, 85 (1999)

    Article  ADS  Google Scholar 

  • B. Bruegmann, W. Tichy, N. Jansen, Numerical simulation of orbiting black holes. Phys. Rev. Lett. 92, 211101 (2004)

    Article  ADS  Google Scholar 

  • A. Buonanno, T. Damour, Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D59, 084006 (1999)

    ADS  MathSciNet  Google Scholar 

  • A. Buonanno, G.B. Cook, F. Pretorius, Inspiral, merger and ring-down of equal-mass black-hole binaries. Phys. Rev. D75, 124018 (2007)

    ADS  MathSciNet  Google Scholar 

  • M. Campanelli et al., Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  Google Scholar 

  • C. Capano, Y. Pan, A. Buonanno, Impact of higher harmonics in searching for gravitational waves from non-spinning binary black holes. Phys. Rev. D 89, 102003 (2014)

    Article  ADS  Google Scholar 

  • J. Clark, L. Cadonati, J. Healy, I.S. Heng, J. Logue, N. Mangini, L. London, L. Pekowsky, D. Shoemaker, Investigating binary black hole mergers with principal component analysis. In this volume (2014). arXiv:1406.5426v2

    Google Scholar 

  • G.B. Cook et al., Boosted three-dimensional black hole evolutions with singularity excision. Phys. Rev. Lett. 80, 2512–2516 (1998)

    Article  ADS  Google Scholar 

  • N. Cornish. April APS Meeting (2014)

    Google Scholar 

  • C. Cutler, T.A. Apostolatos, L. Bildsten, L.S. Finn, E.E. Flanagan et al., The last three minutes: issues in gravitational wave measurements of coalescing compact binaries. Phys. Rev. Lett. 70, 2984–2987 (1993)

    Article  ADS  Google Scholar 

  • M. Dominik, E. Berti, R. O’Shaughnessy, I. Mandel, K. Belczynski et al., Double compact objects III: gravitational wave detection rates (2014). arXiv:1405.7016

    Google Scholar 

  • O. Dreyer, B. Krishnan, D. Shoemaker, E. Schnetter, Introduction to isolated horizons in numerical relativity. Phys. Rev. D67, 024018 (2003)

    ADS  MathSciNet  Google Scholar 

  • S. Fischetti, J. Healy, L. Cadonati, L. London, S.R.P. Mohapatra et al., Exploring the use of numerical relativity waveforms in burst analysis of precessing black hole mergers. Phys. Rev. D83, 044019 (2011)

    ADS  Google Scholar 

  • E.E. Flanagan, S.A. Hughes, Measuring gravitational waves from binary black hole coalescences: 1. Signal-to-noise for inspiral, merger, and ringdown. Phys. Rev. D57, 4535–4565 (1998a)

    Google Scholar 

  • E.E. Flanagan, S.A. Hughes, Measuring gravitational waves from binary black hole coalescences: 2. The Waves’ information and its extraction, with and without templates. Phys. Rev. D57, 4566–4587 (1998b)

    Google Scholar 

  • F. Foucart, L. Buchman, M.D. Duez, M. Grudich, L.E. Kidder et al., First direct comparison of nondisrupting neutron star-black hole and binary black hole merger simulations. Phys. Rev. D88(6), 064017 (2013)

    Google Scholar 

  • D. Gerosa, M. Kesden, E. Berti, R. O’Shaughnessy, U. Sperhake, Resonant-plane locking and spin alignment in stellar-mass black-hole binaries: a diagnostic of compact-binary formation. Phys. Rev. D87(10), 104028 (2013)

    Google Scholar 

  • R. Gomez, L. Lehner, R.L. Marsa, J. Winicour, A.M. Abrahams et al., Stable characteristic evolution of generic three-dimensional single black hole space-times. Phys. Rev. Lett. 80, 3915–3918 (1998)

    Article  ADS  Google Scholar 

  • C. Gundlach, J.M. Martin-Garcia, G. Calabrese, I. Hinder, Constraint damping in the Z4 formulation and harmonic gauge. Class. Quantum Grav. 22, 3767–3774 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • M. Hannam, Modelling gravitational waves from precessing black-hole binaries: progress, challenges and prospects. Gen. Rel. Grav. 46, 1767 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Hannam, S. Husa, J.G. Baker, M. Boyle, B. Bruegmann et al., The Samurai Project: verifying the consistency of black-hole-binary waveforms for gravitational-wave detection. Phys. Rev. D79, 084025 (2009)

    ADS  Google Scholar 

  • M. Hannam, D.A. Brown, S. Fairhurst, C.L. Fryer, I.W. Harry, When can gravitational-wave observations distinguish between black holes and neutron stars? Astrophys. J. 766, L14 (2013)

    Article  ADS  Google Scholar 

  • G.M. Harry, Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084006 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  • J. Healy et al., Template mode hierarchies for binary black hole mergers. Phys. Rev. D 88(2), 024034 (2013)

    Google Scholar 

  • I. Hinder et al., Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration. Class. Quantum Grav. 31, 025012 (2014)

    Article  ADS  Google Scholar 

  • I. Kamaretsos, M. Hannam, S. Husa, B.S. Sathyaprakash, Black-hole hair loss: learning about binary progenitors from ringdown signals. Phys. Rev. D85, 024018 (2012a)

    ADS  Google Scholar 

  • I. Kamaretsos, M. Hannam, B. Sathyaprakash, Is black-hole ringdown a memory of its progenitor? Phys. Rev. Lett. 109, 141102 (2012b)

    Article  ADS  Google Scholar 

  • B.J. Kelly, J.G. Baker, Decoding mode mixing in black-hole merger ringdown. Phys. Rev. D87, 084004 (2013)

    ADS  Google Scholar 

  • M. Kesden, G. Lockhart, E. Sterl Phinney, Maximum black-hole spin from quasi-circular binary mergers. Phys. Rev. D82, 124045 (2010)

    ADS  Google Scholar 

  • G. Khanna, J.G. Baker, R.J. Gleiser, P. Laguna, C.O. Nicasio et al., Inspiralling black holes: The Close limit. Phys. Rev. Lett. 83, 3581–3584 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • S, Klimenko, April APS Meeting (2014)

    Google Scholar 

  • P. Kumar, I. MacDonald, D.A. Brown, H.P. Pfeiffer, K. Cannon et al., Template banks for binary black hole searches with numerical relativity waveforms. Phys. Rev. D89, 042002 (2014)

    ADS  Google Scholar 

  • E.W. Leaver, An analytic representation for the quasi normal modes of Kerr black holes. Proc. R. Soc. Lond. A402, 285–298 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  • L. London, J. Healy, D. Shoemaker, Modeling ringdown: beyond the fundamental quasi-normal modes (2014). arXiv:1404.3197

    Google Scholar 

  • C.O. Lousto, Y. Zlochower, Orbital evolution of extreme-mass-ratio black-hole binaries with numerical relativity. Phys. Rev. Lett. 106, 041101 (2011)

    Article  ADS  Google Scholar 

  • C.O. Lousto, H. Nakano, Y. Zlochower, M. Campanelli, Statistical studies of Spinning Black-Hole Binaries. Phys. Rev. D81, 084023 (2010)

    ADS  Google Scholar 

  • G. Lovelace, Private communication (2014)

    Google Scholar 

  • G. Lovelace et al. Accurate gravitational waveforms for binary-black-hole mergers with nearly extremal spins. Class. Quantum Grav. 29, 045003 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • I. MacDonald, A.H. Mroue, H.P. Pfeiffer, M. Boyle, L.E. Kidder et al., Suitability of hybrid gravitational waveforms for unequal-mass binaries. Phys. Rev. D87, 024009 (2013)

    ADS  Google Scholar 

  • C. Misner, Role of Gravitation in Physics - Report from the 1957 Chapel Hill Conference. Max Planck Research Library for the History and Development of Knowledge (1957)

    Google Scholar 

  • A.H. Mroue et al., A catalog of 174 binary black-hole simulations for gravitational-wave astronomy. Phys. Rev. Lett. 111, 241104 (2013)

    Article  ADS  Google Scholar 

  • F. Ohme, M. Hannam, S. Husa, Reliability of complete gravitational waveform models for compact binary coalescences. Phys. Rev. D84, 064029 (2011)

    ADS  Google Scholar 

  • Y. Pan, A. Buonanno, J.G. Baker, J. Centrella, B.J. Kelly et al., A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case. Phys. Rev. D77, 024014 (2008)

    ADS  Google Scholar 

  • L. Pekowsky, J. Healy, D. Shoemaker, P. Laguna, Impact of higher-order modes on the detection of binary black hole coalescences. Phys. Rev. D 87, 084008 (2013a)

    Article  ADS  Google Scholar 

  • L. Pekowsky et al., Comparing gravitational waves from nonprecessing and precessing black hole binaries in the corotating frame. Phys. Rev. D 88(2), 024040 (2013b)

    Google Scholar 

  • L. Pekowsky, J. Healy, D. Shoemaker, Impact of higher-order modes on parameter recovery from binary black hole coalescences (2014, in preparation)

    Google Scholar 

  • W.H. Press, S.A. Teukolsky, Perturbations of a rotating black hole. II. Dynamical stability of the kerr metric. Astrophys. J. 185, 649–674 (1973)

    Article  Google Scholar 

  • F. Pretorius, Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • S. Privitera, S.R.P. Mohapatra, P. Ajith, K. Cannon, N. Fotopoulos et al., Improving the sensitivity of a search for coalescing binary black holes with non-precessing spins in gravitational wave data. Phys. Rev. D89, 024003 (2014)

    ADS  Google Scholar 

  • J.S. Read, L. Baiotti, J.D.E. Creighton, J.L. Friedman, B. Giacomazzo et al., Matter effects on binary neutron star waveforms. Phys. Rev. D88, 044042 (2013)

    ADS  Google Scholar 

  • J.D. Schnittman, Spin-orbit resonance and the evolution of compact binary systems. Phys. Rev. D70, 124020 (2004)

    ADS  Google Scholar 

  • K. Somiya, Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 29, 124007 (2012)

    Article  ADS  Google Scholar 

  • K. Thorne, in Three Hundred Years of Gravitation, ed. by S.W. Hawking, W. Israel (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  • B. Vaishnav et al., Matched filtering of numerical relativity templates of spinning binary black holes. Phys. Rev. D 76, 084020 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the organizers and participants of the Sant Cugat Forum on Astrophysics on Gravitational Wave Astrophysics. The work presented here was supported by NSF PHY-0955825.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre Shoemaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shoemaker, D., Jani, K., London, L., Pekowsky, L. (2015). Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors. In: Sopuerta, C. (eds) Gravitational Wave Astrophysics. Astrophysics and Space Science Proceedings, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-10488-1_21

Download citation

Publish with us

Policies and ethics