Skip to main content

Assessment of the Impact of Projected Climate Change on Streamflow and Groundwater Recharge in a River Basin

  • Chapter
  • First Online:
Managing Water Resources under Climate Uncertainty

Part of the book series: Springer Water ((SPWA))

Abstract

In this work, a general approach for evaluating the impacts of projected climate change on streamflow and groundwater recharge in a river basin located in the humid tropical zone of India is presented. The projections of a GCM for two important climate variables, viz. rainfall and temperature for two scenarios, A2 and B2, are downscaled by a RCM to predict future climate in the river basin and then input into a physically based hydrologic model, SWAT, to evaluate the impact of projected climate change on streamflow in the river basin. Also, a simple conceptual semi-distributed model to assess the impact of projected climate change on direct groundwater recharge is developed and used to predict groundwater recharge in the A2 and B2 scenarios. This model is based on the water balance concept, linking the atmospheric and hydrogeologic parameters to different hydrological processes and estimates daily water table fluctuations. Results show that in the A2 scenario, for the southwest monsoon period, there is an average increase in temperature of 2 °C and a decrease in rainfall of 11.50 %. Predictions by SWAT indicate an increase in potential evapotranspiration of 1.14 % and a decrease in streamflow of 7.53 % from present-day average values. For the same period, in the B2 scenario, there is an average increase in temperature of 1 °C and a decrease in rainfall of 8.79 %. SWAT predictions show an increase in potential evapotranspiration of 1.12 % and a decrease in streamflow of 4.62 %. Similar trends are predicted for the north-east monsoon period also. Groundwater recharge is predicted to decrease by 7 and 4 % in the A2 and B2 scenarios, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alansi AW, Amin MSM, Abdul Halim G, Shafri HZM, Aimrun W (2009) Validation of SWAT model for stream flow simulation and forecasting in Upper Bernam humid tropical river basin. Malaysia Hydrol Earth Syst Sci Discuss 6:7581–7609

    Article  Google Scholar 

  • Alemaw BF, Chaoka TR (2003) A continental scale water balance model: a GIS approach for southern Africa. Phys Chem Earth 28:957–966

    Article  Google Scholar 

  • Allen LH, Valle RR, Jones JW, Jones PH (1998) Soybean leaf water potential responses to carbon dioxide and drought. Agron J 90:375–383

    Article  Google Scholar 

  • Allen RG, Gichuki FN, Rosenzweig C (1991) CO2 induced climatic changes and irrigation water requirements. J Water Resour Plan Manag 117(2):157–178

    Article  Google Scholar 

  • Arnell NW, Liu C, Compagnucci R, da Cunha L, Hanaki K, Howe C, Mailu G, Shiklomanov I, Stakhiv E (2001) Hydrology and water resources. In: McCarthy JJ, Canziani O, Leary NA, Dokken DJ, and White KS (eds) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge, Chap. 4, pp 191–233

    Google Scholar 

  • Arnell NW, Livermore MJL, Kovats S, Nicholls R, Levy P et al (2003) Socio-economic scenarios for climate change impacts assessments: characterising the SRES storylines. Glob Environ Change 14:3–20

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89

    Article  CAS  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof J (2008) Climate change and water. Technical paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva

    Google Scholar 

  • Cao W, Bowden BW, Davie T (2006) Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol Process 20:1057–1073

    Article  Google Scholar 

  • Christensen J, Boberg F, Christensen O, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi:10.1029/2008GL035694

    Article  Google Scholar 

  • Chu TW, Shirmohammadi A (2004) Evaluation of the SWAT model’s hydrology component in the piedmont physiographic region of Maryland. Trans Am Soc Agric Eng 47(4):1057–1073

    Article  Google Scholar 

  • Cibin R, Sudheer KP, Chaubey I (2010) Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrol Process (Published online in Wiley InterScience). doi:10.1002/hyp

  • Cooley H, Christian-Smith Juliet, Peter H, Gleick Lucy Allen, Cohen Michael (2009) Understanding and reducing the risk of climate change for transboundary waters. Pacific Institute, California (43 pp)

    Google Scholar 

  • de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17

    Article  Google Scholar 

  • de Wit M, van den Hurk B, Warmerdam P, Torfs P, Roulin E, van Deursen W (2007) Impact of climate change on low-flows in the River Meuse. Clim Change 82:351–372. doi:10.1007/s10584-006-9195-2

    Article  Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252

    Article  CAS  Google Scholar 

  • Falkenmark M (2005) Water usability degradation—economist wisdom or societal madness? Water Int 30(2):136–146

    Article  CAS  Google Scholar 

  • Favreau G, Cappelaere B, Massuel S, Leblanc M, Boucher M, Boulain N, Leduc C (2009) Land clearing, climate variability, and water resources increase in semiarid southwest Niger: a review. Water Resour Res 45: W00A16. doi:10.1029/2007WR006785

  • Foster SSD, Morris BL, Lawrence AR (1994) Effects of urbanization on groundwater recharge. In: International proceedings on groundwater problems in urban areas. Telford, London, pp 43–63

    Google Scholar 

  • Frei C, Christensen JH, Deque M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124. doi:10.1029/2002JD002287

    Article  Google Scholar 

  • Gassman PW, Reyes M, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future directions. CARD working paper 07-WP 443. Center for Agricultural and Rural Development, Iowa State University

    Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge in arid regions: review and critique of estimation methods. Hydrol Process 2:255–266

    Article  Google Scholar 

  • Ghosh S, Mujumdar PP (2008) Statistical downscaling of GCM simulations to streamflow using relevance vector machine. Adv Water Resour 31:132–146

    Article  Google Scholar 

  • Gosain AK, Rao Sandhya, Basuray Debajit (2006) Climate change impact assessment on hydrology of Indian River Basins. Curr Sci 90(3):346–353

    Google Scholar 

  • Graham RL, Turner MG, Dale VH (1990) How increasing CO, and climate change affect forests. Bioscience 40(8):575–587

    Article  Google Scholar 

  • Grindley J (1967) The estimation of soil moisture deficits. Meteorol Mag 96:97–108

    Google Scholar 

  • Haan PK, Skaggs RW (2003) Effects of parameter uncertainty on DRAINMOD predictions: hydrology and yield. Trans Am Soc Agric Eng 46(4):1061–1067

    Google Scholar 

  • Hargreaves GL, Hargreaves GH, Riley JP (1985) Agricultural benefits for Senegal River Basin. J Irrig Drain Eng 111(2):113–124

    Article  Google Scholar 

  • Hay LE, Clark MP, Wilby RL, Gutowski WJ Jr, Leavesley GH, Pan Z, Arrit RW, Takle ES (2002) Use of regional climate model output for hydrologic simulations. J Hydrometeorol 3:571–590

    Article  Google Scholar 

  • He B, Takase K, Wang Y (2008) A semi-distributed groundwater recharge model for estimating water-table and water-balance variables. Hydrogeol J 16:1215–1228

    Article  Google Scholar 

  • Heuvelmans G, Muys B, Feyen J (2004) Evaluation of hydrological model parameter transferability for simulating the impact of land use on catchment hydrology. Phys Chem Earth 29:739–747

    Article  Google Scholar 

  • Howard KWF, Lloyd JW (1979) The sensitivity of parameters in the Penman evaporation equations and direct recharge balance. J Hydrol 41:329–344

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: the physical science basis. Contribution of WG I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Available at http://ipcc-wg1.ucar.edu/wg1/wg1-report.html

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ (2004) Generating high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter

    Google Scholar 

  • Kamga FM (2001) Impact of greenhouse gas induced climate change on the runoff of the upper Benue River (Cameroon). J Hydrol 252:145–156

    Article  Google Scholar 

  • Keshta N, Elshorbagy A, Carey S (2009) A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds. Hydrol Earth Syst Sci 13:865–881

    Article  Google Scholar 

  • Khazaei K, Spink AEF, James W (2003) A catchment water balance model for estimating groundwater recharge in arid and semiarid regions of south-east Iran. Hydrogeol J 11:333–342

    Article  Google Scholar 

  • Kleinn J, Frei C, Gurtz J, Luthi D, Vidale P, Schar C (2005) Hydrologic simulations in the Rhine basin driven by a regional climate model. J Geophys Res 110:D04102. doi:10.1029/2004JD005143

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell N, Doll P, Jimenez B, Miller K, Oki T, Şen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53(1):3–10

    Article  Google Scholar 

  • Leander R, Buishand T (2007) Resampling of regional climate model output for the simulation of extreme river flows. J Hydrol 332:487–496. doi:10.1016/j.jhydrol.2006.08.006

    Article  Google Scholar 

  • Legesse D, Vallet-Coulomb C, Gasse F (2003) Hydrological response of a catchment to climate and land use changes in tropical Africa: case study South Central Ethiopia. J Hydrol 275:67–85

    Article  Google Scholar 

  • Linsley RK (1960) Computation of a synthetic streamflow record on a digital computer. In: Surface water (proceedings of the Helsinki symposium, 1960) IAHS Publ no 51, pp 526–538

    Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust, HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:1–34. RG3003. doi:10.1029/2009RG000314

  • Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29:2241–2255

    Article  Google Scholar 

  • Maroco JP, Edwards GE, Ku MSB (1999) Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta 210:115–125

    Article  CAS  Google Scholar 

  • Maxwell EW, Kollet SJ (2008) Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat Geosci 1:665–669

    Article  CAS  Google Scholar 

  • McCabe GJ, Wolock DM (1992) Sensitivity of irrigation demand in a humid-temperate region to hypothetical climatic change. Water Resour Bull 28(3):535–543

    Article  Google Scholar 

  • McCloud DE (1970) Water requirements for turf. Proc Florida Turfgrass Manage Conf 18:88–90

    Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Messager C, Gallée H, Brasseur O, Cappelaere B, Peugeot C, Séguis L, Vauclin M, Ramel R, Grasseau G, Léger L, Girou D (2006) Influence of observed and RCM-simulated precipitation on the water discharge over the Sirba basin, Burkina Faso. Niger Clim Dynam 27(2–3):199–214

    Article  Google Scholar 

  • Middelkoop H, Daamen K, Gellens D, Grabs W, Kwadijk J, Lang H, Parmet B, Schadler B, Schulla J, Wilke K (2001) Impact of climate change on hydrological regimes and water resources management in the Rhine Basin. Clim Change 49:105–128

    Article  CAS  Google Scholar 

  • Mileham L, Richard GT, Todd M, Tindimugaya C, Thompson J (2009) The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrol Sci J 54(4):727–738

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and the environment. The state and movement of water in living organisms. In: 19th Symposia of the Society for Experimental Biology. Cambridge University Press, London, pp 205–234

    Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Gaffin S, Gregory K, Grubler A, Dadi Z (2000) IPCC special report on emissions scenario. Cambridge University Press, Cambridge

    Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: part I. A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2001) Soil and water assessment tool theoretical documentation, Version 2000. Blackland Research Center. Texas Agricultural Experiment Station, Temple, Texas. http://www.brc.tamus.edu/swat/swat2000doc.html

  • Nemec J, Schaake JS (1982) Sensitivity of water systems to climate variation. J Hydrol Sci 27:327–343

    Article  Google Scholar 

  • Potter KW, Bowser CJ (1995) Estimating the spatial distribution of groundwater recharge rates using hydrologic, hydrogeologic, and geochemical methods. Technical report. University of Wisconsin, Madison Water Resource Center, Madison, WRC-GRR-95.07

    Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Ramanarayanan TS, Williams JR, Dugas WA., Hauck LM, McFarland AMS (1997) Using APEX to identify alternative practices for animal waste management. ASAE Paper No. 972209. St. Joseph, Michigan, ASAE

    Google Scholar 

  • Raneesh KY, Thampi SG (2013) A simple semi-distributed hydrologic model to estimate groundwater recharge in a humid tropical basin. Water Resour Manage 27(5):1517–1532

    Article  Google Scholar 

  • Refsgaard JC, Storm B (1996) Construction, calibration and validation of hydrological models. In: Abbott MB, Refsgaard JC (eds) Distributed hydrological modelling. Kluwer Academic, Dordrecht, pp 41–54

    Google Scholar 

  • Reilly J, Tubiello F, McCarl B, Melillo J (2001) Climate change and agriculture in the United States, in climate change impacts on the United States: the potential consequences of climate variability and change. The National Assessment Synthesis Team. Cambridge University Press, Cambridge 618 pp

    Google Scholar 

  • Ritchie JT (1972) A model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8:1204–1213

    Article  Google Scholar 

  • Rupa Kumar K, Sahai AK, Krishna Kumar K, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90(3):334–345

    Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10:110–120

    Article  CAS  Google Scholar 

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Hauck L (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour As 37(5):1169–1188

    Article  CAS  Google Scholar 

  • Schuol J, Abbaspour KC (2007) Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecol Model 201:301–311

    Article  Google Scholar 

  • Scibek J, Allen DM (2006) Comparing the responses of two high permeability, unconfined aquifers to predicted climate change. Global Planet Change 50:50–62

    Article  Google Scholar 

  • Shabalova M, van Deursen W, Buishand T (2003) Assessing future discharge of the River Rhine using regional climate model integrations and a hydrological model. Clim Res 23:233–246

    Article  Google Scholar 

  • Shah T (2009) Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ Res Lett 4(35005):1–13. doi:10.1088/1748-9326/4/3/035005

    Google Scholar 

  • Soares WR, Marengo JA (2009) Assessments of moisture fluxes east of the Andes in South America in a global warming scenario. Int J Climatol 29:1395–1414

    Article  Google Scholar 

  • Sophocleous M (1992) Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics. J Hydrol 137:113–140

    Article  Google Scholar 

  • Srinivasan R, Ramanarayanan TS, Arnold JG, Bednarz ST (1998) Large area hydrologic modeling and assessment part II: model application. J Am Water Resour As 34(1):91–101

    Article  CAS  Google Scholar 

  • Sugawara M, Funiyuki M (1956) A method of revision of the river discharge by means of a rainfall model. Collection of research papers about forecasting hydrologic variables. The Geosphere Research Institute of Saitama University, Saitama, Japan, pp 14–18

    Google Scholar 

  • Sugawara M (1995) Tank model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch

    Google Scholar 

  • Thomson AM, Rosenberg NJ, Izaurralde RC, Brown RA (2005) Climate change impacts for the conterminous USA: an integrated assessment part 2: models and validation. Clim Change 69:27–41

    Article  CAS  Google Scholar 

  • Urrutia R, Vuille M (2009) Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. J Geophys Res 114:D02108. doi:10.1029/2008JD011021

    Google Scholar 

  • Van Vuuren PD, O’Neill BC (2006) The consistency of IPCC’s SRES scenarios to recent literature and recent projections. Clim Change 75:9–46

    Article  CAS  Google Scholar 

  • Varis O, Kajander T, Lemmelä R (2004) Climate and water: from climate models to water resources management and vice versa. Clim Change 66(3):321–344

    Article  Google Scholar 

  • Viviroli D, Archer DR, Buytaert W, Fowler HJ, Greenwood GB, Hamlet AF, Huang Y, Koboltschnig G, Litaor MI, López-Moreno JI, Lorentz S, Schädler B, Schwaiger K, Vuille M, Woods R (2010) Climate change and mountain water resources: overview and recommendations for research, management and politics. Hydrol Earth Syst Sci Discuss 7:2829–2895. doi:10.5194/hessd-7-2829-2010

    Article  Google Scholar 

  • Vorosmarty CJ, Douglas EM, Green PA, Revenga C (2005) Geospatial indicators of emerging water stress: an application to Africa. Ambio 34:230–236

    Google Scholar 

  • Walker GR, Jolly ID, Cook PG (1991) A new chloride leaching approach to the estimation of diffuse recharge following a change in land use. J Hydrol 128:49–67

    Article  Google Scholar 

  • Wigley TM, Jones PD (1985) Influences of precipitation changes and direct CO2 effects on streamflow. Nature 314:149–152

    Article  CAS  Google Scholar 

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the River Thames. UK Water Resour Res 42:W02419. doi:10.1029/2005WR004065

    Google Scholar 

  • Wolock DM, McCabe GJ (1999) Estimates of runoff using water-balance and atmospheric general circulation models. J Am Water Resour Assoc 35(6):1341–1350

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department for Environment, Food and Rural Affairs (DEFRA), Government of United Kingdom, for sponsoring the joint Indo–UK programme on Climate Change and the Ministry of Environment and Forests (MoEF), Government of India, for coordinating its implementation. Thanks are due to the Hadley Centre for Climate Prediction and Research, UK Meteorological Office, for making available the regional model—PRECIS. Support of the PRECIS simulation datasets is provided by the Indian Institute of Tropical Meteorology, Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh G. Thampi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Thampi, S.G., Raneesh, K.Y. (2015). Assessment of the Impact of Projected Climate Change on Streamflow and Groundwater Recharge in a River Basin. In: Shrestha, S., Anal, A., Salam, P., van der Valk, M. (eds) Managing Water Resources under Climate Uncertainty. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-319-10467-6_8

Download citation

Publish with us

Policies and ethics