Skip to main content

Safety and Quality Aspects of Smear Ripened Cheeses

  • Chapter
  • First Online:
  • 683 Accesses

Abstract

Diarrhoeic diseases at world scale are the 5th most important cause of death, mainly due to lack of sanitation and unsafe drinking water. They can also originate from food, generating most of food-borne outbreaks. Eggs and egg products are the most common foodstuff category implied in food-borne outbreaks in EU, while cheese plays a limited role (2.3 % of strong evidence outbreaks in 2010) mainly due to staphylococcal toxins. Because of their physico-chemical traits, smear cheeses can offer favorable conditions to the development of Listeria monocytogenes. The bacterium is most often detected in soft and semi-soft cheeses made from pasteurised vs raw milk. Natural combination of various microorganisms and their metabolites in milk and cheese could act as multiple hurdles. Antilisterial activity is exhibited by some actinomycetes isolated from smear cheese but is less effective than that of microbial consortia. Microbial interactions, in which actinomycetes may play an important role, could be a key point in explaining antilisterial activity, but mechanisms are not fully understood. Quality of smear cheese can be affected by blowing defects due to gas-producing bacteria like coliform and butyric acid bacteria. Pigmented strains of Gram negative bacteria, e.g. Pseudomonas fluorescens are associated with fluorescent spots and off-flavours. How microbial balance affects spoilage activity has to be investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angelidis AS, Boutsiouki P, Papageorgiou DK (2010) Loss of viability of Listeria monocytogenes in contaminated processed cheese during storage at 4, 12 and 22 degrees C. Food Microbiol 27:809–818

    Article  PubMed  Google Scholar 

  • Anonymous (2011) Principales causes de décès dans le monde. Aide mémoire n°310, Organisation Mondiale de la Santé (WHO). http://www.who.int/mediacentre/factsheets/fs310/fr/index.html. Accessed 9 Nov 2012

  • Anonymous (2012) Statistiques sanitaires mondiales 2012. Organisation Mondiale pour la Santé (WHO). http://www.who.int/gho/publications/world_health_statistics/2012/fr/index.html. Accessed 9 Nov 2012

  • Bahk J, Marth EH (1990) Listeriosis and Listeria monocytogenes. In: Cliver DO (ed) Foodborne diseases. Academic Press, Inc., New York, pp 247–257

    Google Scholar 

  • Barancelli GV, Camargo TM, Reis CM, Porto E, Hofer E, Oliveira CA (2011) Incidence of Listeria monocytogenes in cheese manufacturing plants from the northeast region of Sao Paulo, Brazil. J Food Prot 74:816–819

    Article  PubMed  Google Scholar 

  • Bonaïti C, Irlinger F, Spinnler HE, Engel E (2005) An iterative sensory procedure to select odor-active associations in complex consortia of microorganisms: application to the construction of a cheese model. J Dairy Sci 88:1671–1684

    Article  PubMed  Google Scholar 

  • Brooks JC, Martinez B, Stratton J, Bianchini A, Krokstrom R, Hutkins R (2012) Survey of raw milk cheeses for microbiological quality and prevalence of foodborne pathogens. Food Microbiol 31:154–158

    Article  CAS  PubMed  Google Scholar 

  • Callon C, Saubusse M, Didienne R, Buchin S, Montel MC (2011) Simplification of a complex microbial antilisterial consortium to evaluate the contribution of its flora in uncooked pressed cheese. Int J Food Microbiol 145:379–389

    Article  CAS  PubMed  Google Scholar 

  • Carnio MC, Eppert I, Scherer S (1999) Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential. Int J Food Microbiol 47:89–97

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:82–100

    CAS  Google Scholar 

  • Coveney HM, Fitzgerald GF, Daly C (1994) A study of the microbiological status of Irish farmhouse cheeses with emphasis on selected pathogenic and spoilage microorganisms. J Appl Bacteriol 77:621–630

    Article  CAS  PubMed  Google Scholar 

  • D’Amico DJ, Druart MJ, Donnelly CW (2008a) 60-day aging requirement does not ensure safety of surface-mold-ripened soft cheeses manufactured from raw or pasteurized milk when Listeria monocytogenes is introduced as a postprocessing contaminant. J Food Prot 71:1563–1571

    PubMed  Google Scholar 

  • D’Amico DJ, Groves E, Donnelly CW (2008b) Low incidence of foodborne pathogens of concern in raw milk utilized for farmstead cheese production. J Food Prot 71:1580–1589

    PubMed  Google Scholar 

  • De Buyser ML, Dufour B, Maire M, Lafarge V (2001) Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int J Food Microbiol 67:1–17

    Article  PubMed  Google Scholar 

  • Dieuleveux V, Guéguen M (1998) Antimicrobial effects of D-3-phenyllactic acid on Listeria monocytogenes in TSB-YE medium, milk, and cheese. J Food Prot 61:1281–1285

    CAS  PubMed  Google Scholar 

  • EFSA (2009) The community summary report on trends and sources of zoonoses and zoonotic agents in the European Union in 2007. EFSA J 2009:223

    Google Scholar 

  • EFSA (2010) The community summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2008. EFSA J 8(1):1496

    Google Scholar 

  • EFSA (2011) European Food Safety Authority, European Centre for Disease Prevention and Control; The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA J 9(3):2090. [378 pp.] doi:10.2903/j.efsa.2011.2090. Available online: www.efsa.europa.eu/efsajournal

  • EFSA (2012) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in the European Union in 2010. EFSA J 10(3):2597 [442 pp.] doi:10.2903/j.efsa.2012.2597. Available online: www.efsa.europa.eu/efsajournal

  • Eppert I, Valdes-Stauber N, Gotz H, Busse M, Scherer S (1997) Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl Environ Microbiol 63:4812–4817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galaup P, Gautier A, Piriou Y, de Villeblanche A, Valla A, Dufossé L (2007) First pigment fingerprints from the rind of French PDO red-smear ripened soft cheeses Epoisses, Mont d’Or and Maroilles. Innov Food Sci Emerg Technol 8:373–378

    Article  CAS  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  PubMed  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  PubMed  Google Scholar 

  • Gay M, Amgar A (2005) Factors moderating Listeria monocytogenes growth in raw milk and in soft cheese made from raw milk. Lait 85:153–170

    Article  Google Scholar 

  • Guichard H, Bonnarme P (2005) Development and validation of a plate technique for screening of microorganisms that produce volatile sulfur compounds. Anal Biochem 338:299–305

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel WH, Geisen R, Schillinger U (1995) Biological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes. Int J Food Microbiol 24:343–362

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Desmasures N, Vernoux JP (2010) From undefined red smear cheese consortia to minimal model communities both exhibiting similar anti-listerial activity on a cheese-like matrix. Food Microbiol 27:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Bré JM, Guéguen M, Vernoux JP, Desmasures N (2013) Reduced growth of Listeria monocytogenes in two model cheese microcosms is not associated with individual microbial strains. Food Microbiol 33:30–39

    Article  PubMed  Google Scholar 

  • Leclercq-Perlat MN, Oumer A, Bergere JL, Spinnler HE, Corrieu G (2000) Behavior of Brevibacterium linens and Debaryomyces hansenii as ripening flora in controlled production of smear soft cheese from reconstituted milk: growth and substrate consumption dairy foods. J Dairy Sci 83:1665–1673

    Article  CAS  PubMed  Google Scholar 

  • Maoz A, Mayr R, Scherer S (2003) Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Appl Environ Microbiol 69:4012–4018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayr R, Fricker M, Maoz A, Scherer S (2004) Anti-listerial activity and biodiversity of cheese surface cultures: influence of the ripening temperature regime. Eur Food Res Technol 218:242–247

    Article  CAS  Google Scholar 

  • Millet L, Saubusse M, Didienne R, Tessier L, Montel MC (2006) Control of Listeria monocytogenes in raw-milk cheeses. Int J Food Microbiol 108:105–114

    Article  CAS  PubMed  Google Scholar 

  • Monnet C, Bleicher A, Neuhaus K, Sarthou A-S, Leclercq-Perlat MN, Irlinger F (2010) Assessment of the anti-listerial activity of microfloras from the surface of smear-ripened cheeses. Food Microbiol 27:302–310

    Article  CAS  PubMed  Google Scholar 

  • Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F (2014) Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 177:136–154

    Article  PubMed  Google Scholar 

  • Nilsson L, Hansen TB, Garrido P, Buchrieser C, Glaser P, Knøchel S, Gram L, Gravesen A (2005) Growth inhibition of Listeria monocytogenes by a nonbacteriocinogenic Carnobacterium piscicola. J Appl Microbiol 98:172–183

    Article  CAS  PubMed  Google Scholar 

  • Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  CAS  PubMed  Google Scholar 

  • Ropars J, Cruaud C, Lacoste S, Dupont J (2012) A taxonomic and ecological overview of cheese fungi. Int J Food Microbiol 155:199–210

    Article  PubMed  Google Scholar 

  • Rosengren A, Fabricius A, Guss B, Sylvén S, Lindqvist R (2010) Occurrence of foodborne pathogens and characterization of Staphylococcus aureus in cheese produced on farm-dairies. Int J Food Microbiol 144:263–269

    Article  CAS  PubMed  Google Scholar 

  • Roth E, Miescher Schwenninger S, Hasler M, Eugster-Meier E, Lacroix C (2010) Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis. BMC Microbiol 10:74

    Article  PubMed Central  PubMed  Google Scholar 

  • Rudolf M, Scherer S (2001) High incidence of Listeria monocytogenes in European red smear cheese. Int J Food Microbiol 63:91–98

    Article  Google Scholar 

  • Ryser ET, Maisnier-Patin S, Gratadoux JJ, Richard J (1994) Isolation and identification of cheese-smear bacteria inhibitory to Listeria spp. Int J Food Microbiol 21:237–246

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vitela MR, Mendoza-Bernardo M, Castro-Rosas J, Gomez-Aldapa CA, Garay-Martinez LE, Navarro-Hidalgo V, Villarruel-López A (2012) Incidence of Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, and staphylococcal enterotoxin in two types of Mexican fresh cheeses. J Food Prot 75:79–84

    Article  CAS  PubMed  Google Scholar 

  • Vadyvaloo V, Arous S, Gravesen A, Héchard Y, Chauhan-Haubrock R, Hastings JW, Rautenbach M (2004) Cell-surface alterations in class IIa bacteriocin-resistant Listeria monocytogenes strains. Microbiology 150(Pt 9):3025–3033

    Article  CAS  PubMed  Google Scholar 

  • Valdès-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Desmasures .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Imran, M., Desmasures, N. (2015). Safety and Quality Aspects of Smear Ripened Cheeses. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_9

Download citation

Publish with us

Policies and ethics