Skip to main content
  • 673 Accesses

Abstract

Systems biology approaches in smear cheeses will be challenging but will highlight gaps in knowledge as well as providing new ways to address problems and opportunities in cheese making. Advances in genomics, metagenomics and transcriptomics, driven by new sequencing technologies, and in modeling will push this agenda. Progress in these approaches in the lactic acid bacteria, with about 150 genomes currently completed or in progress, will provide both a template and a basis as to how the smear cheese consortium functions on the cheese matrix and adds to it. The targets for enhancing cheese exhibit just those characteristics of synergy and contingency which will benefit from a systems approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By 2013 there were 149 whole or draft genomes of more than 50 LAB species.

References

  • Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28:169–185

    Article  CAS  PubMed  Google Scholar 

  • Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19:29–32

    Article  CAS  Google Scholar 

  • Berger C, Martin N, Collin S, Gijs L, Khan JA, Piraprez G, Spinnler HE, Vulfson EN (1999) Combinatorial approach to flavor analysis: II. Olfactory investigation of a library of S-methyl thioesters and sensory evaluation of selected components. J Agric Food Chem 47:3274–3279

    Article  CAS  PubMed  Google Scholar 

  • Bleicher A, Obermajer T, Matijasic BB, Scherer S, Neuhaus K (2010) High biodiversity and potent anti-listerial action of complex red smear cheese microbial ripening consortia. Ann Microbiol 60:531–539

    Article  Google Scholar 

  • Brennan NM, Ward AC, Beresford TP, Fox PF, Goodfellow M, Cogan TM (2002) Biodiversity of the bacterial flora on the surface of a smear cheese. Appl Environ Microbiol 68:820–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bruyneel B, van de Woestyne M, Verstraete W (1989) Lactic acid bacteria: micro-organisms able to grow in the absence of available iron and copper. Biotechnol Lett 11:401–406

    Article  CAS  Google Scholar 

  • Buyong N, Kok J, Luchansky JB (1998) Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese. Appl Environ Microbiol 64:4842–4845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T, Ross RP (2008) Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190:727–735

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YS, Christensen JE, Broadbent JR, Steele JL (2003) Identification and characterization of Lactobacillus helveticus PepO2, an endopeptidase with post-proline specificity. Appl Environ Microbiol 69:1276–1282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cleveland J, Montville TJ, Nes IF, Michael L, Chikindas ML (2001) Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20

    Article  CAS  PubMed  Google Scholar 

  • Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866

    Article  CAS  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    Article  PubMed  Google Scholar 

  • Del Carmen Martinez-Cuesta M, Pelaez C, Requena T (2013) Methionine metabolism: major pathways and enzymes involved and strategies for control and diversification of volatile sulfur compounds in cheese. Crit Rev Food Sci Nutr 53:366–385

    Article  Google Scholar 

  • Delahunty CM, Drake MA (2004) Sensory character of cheese and its evaluation in cheese. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology, vol 1, 3rd edn, General aspects. Elsevier, London, pp 455–487

    Google Scholar 

  • Eppert L, Valde’s-Stauber N, Gotz H, Busse M, Scherer S (1997) Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl Environ Microbiol 63:4812–4817

    CAS  PubMed Central  PubMed  Google Scholar 

  • European Food Safety Authority (2011) Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J 9:2393

    Google Scholar 

  • Feurer C, Vallaeys T, Corrieu G, Irlinger F (2004) Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a French soft, red-smear cheese? J Dairy Sci 87:3189–3197

    Article  CAS  PubMed  Google Scholar 

  • Follmann M, Becker M, Ochrombel I, Ott V, Krämer R, Marin K (2009) Potassium transport in Corynebacterium glutamicum is facilitated by the putative channel protein CglK, which is essential for pH homeostasis and growth at acidic pH. J Bacteriol 191:2944–2952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Forquin MP, Hébert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I (2011) Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum. Appl Environ Microbiol 77:1449–1459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox PF, Wallace JM, Morgan S, Lynch CM, Niland EJ, Tobin J (1996) Acceleration of cheese ripening. Antonie Van Leeuwenhoek 70:271–297

    Article  CAS  PubMed  Google Scholar 

  • Frings E, Holtz C, Kunz B (1993) Studies about casein degradation by Brevibacterium linens. Milchwissenschaft 48:130–133

    CAS  Google Scholar 

  • Fucà N, Pastaa C, Impocoa G, Caccamoa M, Licitraa G (2013) Microstructural properties of milk fat globules. Int Dairy J 31:44–50

    Article  Google Scholar 

  • Gagnaire V, Molle D, Herrouin M, Leonil J (2001) Peptides identified during Emmental cheese ripening: origin and proteolytic systems involved. J Agric Food Chem 49:4402–4413

    Article  CAS  PubMed  Google Scholar 

  • Gaucheron F, Le Graet Y, Raulot K, Piot M (1997) Physicochemical characterization of iron-supplemented skim milk. Int Dairy J 7:141–148

    Article  CAS  Google Scholar 

  • Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, Cogan TM, Vancanneyt M, Scherer S (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a south German red smear cheese. Appl Environ Microbiol 74:2210–2217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goerges S, Koslowsky M, Velagic S, Borst N, Bockelmann W, Heller KJ, Scherer S (2011) Anti-listerial potential of food-borne yeasts in red smear cheese. Int Dairy J 21:83–89

    Article  CAS  Google Scholar 

  • Hanniffy SB, Philo M, Peláez C, Gasson MJ, Requena T, Martínez-Cuesta MC (2009) Heterologous production of methionine-γ-lyase from Brevibacterium linens in Lactococcus lactis and formation of volatile sulfur compounds? Appl Environ Microbiol 75:2326–2332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helinck S, Perello M-C, Deetae P, de Revel G, Spinnler HE (2013) Debaryomyces hansenii, Proteus vulgaris, Psychrobacter sp. and Microbacterium foliorum are able to produce biogenic amines. Dairy Sci Technol 93:191–200

    Article  CAS  Google Scholar 

  • Hystead E, Diez-Gonzalez F, Schoenfuss TC (2013) The effect of sodium reduction with and without potassium chloride on the survival of Listeria monocytogenes in Cheddar cheese. J Dairy Sci 96:6172–6185

    Article  CAS  PubMed  Google Scholar 

  • Irlinger F, Mounier J (2009) Microbial interactions in cheese: implications for cheese quality and safety. Curr Opin Biotechnol 20:142–148

    Article  CAS  PubMed  Google Scholar 

  • Ismail B, Nielsen SS (2010) Plasmin protease in milk: current knowledge and relevance to dairy industry. J Dairy Sci 93:4999–5009

    Article  CAS  PubMed  Google Scholar 

  • Jenssen H, Hancock RE (2009) Antimicrobial properties of lactoferrin. Biochimie 91:19–29

    Article  CAS  PubMed  Google Scholar 

  • Juneja VK, Dwivedi HP, Yan X (2012) Novel natural food antimicrobials. Ann Rev Food Sci Technol 3:381–403

    Article  CAS  Google Scholar 

  • Kato F, Eguchi Y, Nakano M, Oshima T, Murata A (1991) Purification and characterization of linecin A, a bacteriocin of Brevibacterium linens. Agric Biol Chem 55:161–166

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides – opportunities for designing future foods. Curr Pharm Des 9:1297–1308

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Grover S, Sharma J, Batish VK (2010) Chymosin and other milk coagulants: sources and biotechnological interventions. Crit Rev Biotechnol 30:243–258

    Article  CAS  PubMed  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    Article  CAS  PubMed  Google Scholar 

  • Kunji ER, Mierau I, Hagting A, Poolman B, Konings WN (1996) The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek 70:187–221

    Article  CAS  PubMed  Google Scholar 

  • Linares DM, Martin MC, Ladero V, Alvarez MA, Fernandez M (2011) Biogenic amines in dairy products. Crit Rev Food Sci Nutr 51:691–703

    Article  CAS  PubMed  Google Scholar 

  • Linares DM, del Rio B, Ladero V, Martinez N, Martin MC, Alvarez MA (2012) Factors influencing biogenic amines accumulation in dairy products. Front Microbiol 180:1–10

    Google Scholar 

  • Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ (2010) The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11:36

    Article  PubMed Central  PubMed  Google Scholar 

  • Maertens J, Vanrolleghem PA (2010) Modeling with a view to target identification in metabolic engineering: a critical evaluation of the available tools. Biotechnol Prog 26:313–331

    CAS  PubMed  Google Scholar 

  • Maintz L, Novak N (2007) Histamine and histamine intolerance. Am J Clin Nutr 85:1185–1196

    CAS  PubMed  Google Scholar 

  • Maisnier-Patin S, Richard J (1995) Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium. Appl Environ Microbiol 61:1847–1852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maoz A, Mayr R, Scherer S (2003) Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Appl Environ Microbiol 69:4012–4018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McPherson AV, Kitchen BJ (1983) Reviews of the progress of dairy science: the bovine milk fat globules membrane – its formation, composition, structure and behaviour in milk and dairy products. J Dairy Res 50:107–133

    Article  CAS  Google Scholar 

  • Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int 91:965–980

    CAS  PubMed  Google Scholar 

  • Molimard P, Spinnler HE (1996) Review: compounds involved in the flavour of surface mould-ripened cheeses: origins and properties. J Dairy Sci 79:169–184

    Article  CAS  Google Scholar 

  • Monnet C, Loux V, Gibrat J-F, Spinnler E, Barbe V, Vacherie B, Gavory F, Gourbeyre E, Siguier P, Chandler M, Elleuch R, Irlinger F, Vallaeys T (2010) The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS One 5:e15489

    Article  PubMed Central  PubMed  Google Scholar 

  • Monnet C, Back A, Irlinger F (2012) Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron. Appl Environ Microbiol 78:3185–3192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Motta AS, Brandelli A (2008) Properties and antimicrobial activity of the smear surface cheese coryneform bacterium Brevibacterium linens. Eur Food Res Technol 227:1299–1306

    Article  CAS  Google Scholar 

  • Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou A-S, Hélias A, Irlinger F (2008) Microbial interactions within a cheese microbial community. Appl Environ Microbiol 74:172–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen SS (2002) Plasmin system and microbial proteases in milk: characteristics, roles and relationship. J Agric Food Chem 50:6628–6634

    Article  CAS  PubMed  Google Scholar 

  • Noordman WH, Reissbrodt R, Bongers RS, Rademaker JLW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol 101:637–646

    Article  CAS  PubMed  Google Scholar 

  • Nunez M, Rodriguez JL, Garcia E, Gaya P, Medina M (1997) Inhibition of Listeria monocytogenes by enterocin 4 during the manufacture and ripening of Manchego cheese. J Appl Microbiol 83:671–677

    Article  CAS  PubMed  Google Scholar 

  • Onraedt A, De Muynck C, Walcarius B, Soetaert W, Vandamme E (2004) Ectoine accumulation in Brevibacterium epidermis. Biotechnol Lett 26:1481–1485

    Article  CAS  PubMed  Google Scholar 

  • Pastink MI, Teusink B, Hols P, Visser S, de Vos WM, Hugenholtz J (2009) Genome-scale model of Streptococcus thermophiles LMG18311 for metabolic comparison of lactic acid bacteria. Appl Environ Microbiol 75:3627–3633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rollié S, Mangold M, Sundmacher K (2012) Designing biological systems: systems engineering meets synthetic biology. Chem Eng Sci 69:1–29

    Article  Google Scholar 

  • Sabra W, Dietz D, Tjahjasari D, Zeng AP (2010) Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 10:407–421

    Article  CAS  Google Scholar 

  • Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  CAS  PubMed  Google Scholar 

  • Schröder J, Maus I, Trost E, Tauch A (2011) Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 12:545

    Article  PubMed Central  PubMed  Google Scholar 

  • Sforza S, Cavatorta V, Lambertini F, Galaverna G, Dossena A, Marchelli R (2012) Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J Dairy Sci 95:3514–3526

    Article  CAS  PubMed  Google Scholar 

  • Shammet KM, Brown RJ, McMahon DJ (1992) Proteolytic activity of some milk-clotting enzymes on κ-casein. J Dairy Sci 75:1373–1379

    Article  CAS  Google Scholar 

  • Slattery L, O’Callaghan J, Fitzgerald GF, Beresford T, Ross RP (2010) Lactobacillus helveticus- a thermophilic dairy starter related to gut bacteria. J Dairy Sci 93:4435–4445

    Article  CAS  PubMed  Google Scholar 

  • Sourabie AM, Spinnler HE, Bourdat-Deschamps M, Tallon R, Landaud S, Bonnarme P (2012) S-methyl thioesters are produced from fatty acids and branched-chain amino acids by brevibacteria: focus on L-leucine catabolic pathway and identification of acyl-CoA intermediates. Appl Microbiol Biotechnol 93:1673–1683

    Article  CAS  PubMed  Google Scholar 

  • Sridhar VR, Hughes JE, Welker DL, Broadbent JR, Steele JL (2005) Identification of endopeptidase genes from the genomic sequence of Lactobacillus helveticus CNRZ32 and the role of these genes in hydrolysis of model bitter peptides. Appl Environ Microbiol 71:3025–3032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steele J, Broadbent J, Kok J (2013) Perspectives on the contribution of lactic acid bacteria to cheese flavor development. Curr Opin Biotechnol 24:135–141

    Article  CAS  PubMed  Google Scholar 

  • Stolyar S, Van Dien S, Hillesland KL, Pinel N, Lie TJ, Leigh JA, Stahl DA (2007) Metabolic modeling of a mutualistic microbial community. Mol Syst Biol 3:92

    Article  PubMed Central  PubMed  Google Scholar 

  • SÏ•rhaug T, Ordal ZJ (1974) Cell-bound lipase and esterase of Brevibacterium linens. Appl Microbiol 27:607–608

    Google Scholar 

  • Teusink B, Bachmann H, Molenaar D (2011) Systems biology of lactic acid bacteria: a critical review. Microb Cell Fact 10(Suppl 1):S11

    Article  PubMed Central  PubMed  Google Scholar 

  • Tzamali E, Poirazi P, Tollis IG, Reczko M (2011) A computational exploration of bacterial metabolic diversity identifying metabolic interactions and growth efficient strain communities. BMC Syst Biol 5:167

    Article  PubMed Central  PubMed  Google Scholar 

  • Valdés-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    PubMed Central  PubMed  Google Scholar 

  • Vallejo JA, Ageitos JM, Poza M, Villa TG (2012) A comparative analysis of recombinant chymosins. J Dairy Sci 95:609–613

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang G (2004) APD: the antimicrobial database. Nucleic Acids Res 32:D590–D592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583

    CAS  PubMed  Google Scholar 

  • Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185–201

    Article  CAS  Google Scholar 

  • Zhuang K, Izallalen M, Mouser P, Richter H, Risso C, Mahadevan R, Lovley DR (2011) Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in anoxic subsurface environments. ISME J 5:305–316

    Article  PubMed Central  PubMed  Google Scholar 

  • Zomorrodi AR, Maranas CD (2012) OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput Biol 8(2):e1002363

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Ward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, A.C. (2015). Systems Biology of Smear Cheese Consortia. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_8

Download citation

Publish with us

Policies and ethics