Skip to main content

Abstract

Microbial community structure is the result of environmental conditions that vary significantly and frequently. In laboratory conditions, associations from two microorganisms to complex microbial communities are used to mimic real ecosystems and their functions. Nevertheless, the composition of individual members of complex ecosystems and their relationships, as well the environmental conditions needed to re-create microcosms and their associated activities, are hard to reproduce. The present chapter gives a laboratory-based methodological approach to study structure-function relationships. The results obtained from a systematic study of various ecosystems and the extent of environmental conditions that dictate the structure of communities and the link with ecosystem function are discussed. We also comment on, to what extent the results obtained in laboratory conditions are transposable to natural ecosystems. Finally, three specific case-studies related to cheese ripening are developed to illustrate how microbial ecology can be integrated into food microbiology for better quality and safety of smear cheeses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lactic curd is obtained through acidification of milk by LAB (Lactic acid bacteria), rennet curd by enzyme-driven clotting of milk (rennet) and mixed curd by addition of both rennet and LAB.

References

  • Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barancelli GV, Camargo TM, Reis CM, Porto E, Hofer E, Oliveira CA (2011) Incidence of Listeria monocytogenes in cheese manufacturing plants from the northeast region of Sao Paulo, Brazil. J Food Prot 74:816–819

    Article  PubMed  Google Scholar 

  • Bernstein HC, Carlson RP (2012) Microbial consortia engineering for cellular factories: in vitro to in silico systems. Comput Struct Biotechnol J 3:e201210017

    Article  PubMed Central  PubMed  Google Scholar 

  • Bonaïti C (2004) Approche dynamique des fonctions et des interactions microbiennes dans un écosystème reconstitué par une méthode d’omission: exemple de l’affinage du fromage de Livarot. PhD thesis, Institut National Agronomique, Paris-Grignon, France

    Google Scholar 

  • Bonaiti C, Irlinger F, Spinnler HE, Engel E (2005) An iterative sensory procedure to select odor-active associations in complex consortia of microorganisms: application to the construction of a cheese model. J Dairy Sci 88:1671–1684

    Article  CAS  PubMed  Google Scholar 

  • Boyle SA, Rich JJ, Bottomley PJ, Cromack JK, Myrold DD (2006) Reciprocal transfer effects on denitrifying community composition and activity at forest and meadow sites in the Cascade Mountains of Oregon. Soil Biol Biochem 38:870–878

    Article  CAS  Google Scholar 

  • Brennan NM, Ward AC, Beresford TP, Fox PF, Goodfellow M, Cogan TM (2002) Biodiversity of the bacterial flora on the surface of a smear cheese. Appl Environ Microbiol 68:820–830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brenner K, Arnold FH (2011) Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One 6(2):e16791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks JC, Martinez B, Stratton J, Bianchini A, Krokstrom R, Hutkins R (2012) Survey of raw milk cheeses for microbiological quality and prevalence of foodborne pathogens. Food Microbiol 31:154–158

    Article  CAS  PubMed  Google Scholar 

  • Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 108:14288–14293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Corno G (2006) Effects of nutrient availability and Ochromonas sp. predation on size and composition of a simplified aquatic bacterial community. FEMS Microbiol Ecol 58:354–363

    Article  CAS  PubMed  Google Scholar 

  • Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends Ecol Evol 16:178–183

    Article  PubMed  Google Scholar 

  • De Buyser M-L, Dufour B, Maire M, Lafarge V (2001) Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int J Food Microbiol 67:1–17

    Article  CAS  PubMed  Google Scholar 

  • Eppert I, Valdes-Stauber N, Gotz H, Busse M, Scherer S (1997) Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl Environ Microbiol 63:4812–4817

    CAS  PubMed Central  PubMed  Google Scholar 

  • European Centre for Disease Prevention and Control, European Food Safety Authority (2012) The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J 10(3):2598

    Google Scholar 

  • Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62:1157–1170

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frey JC, Angert ER, Pell AN (2006) Assessment of biases associated with profiling simple, model communities using terminal-restriction fragment length polymorphism-based analyses. J Microbiol Methods 67:9–19

    Article  CAS  PubMed  Google Scholar 

  • Frossard A, Gerull L, Mutz M, Gessner MO (2012) Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors. ISME J 6:680–691

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fukami T, Morin PJ (2003) Productivity-biodiversity relationships depend on the history of community assembly. Nature 424:423–426

    Article  CAS  PubMed  Google Scholar 

  • Galaup P, Gautier A, Piriou Y, Villeblanche A, Valla A, Dufossé L (2007) First pigment fingerprints from the rind of French PDO red-smear ripened soft cheeses Epoisses, Mont d’Or and Maroilles. Innov Food Sci Emerg 8:373–378

    Article  CAS  Google Scholar 

  • Gandhi M, Chikindas ML (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113:1–15

    Article  PubMed  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, Yamada T, Paccanaro A, Jensen LJ, Snyder M, Bork P, Gerstein MB (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci U S A 106:1374–1379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert JA, Field D, Swift P, Thomas S, Cummings D, Temperton B, Weynberg K, Huse S, Hughes M, Joint I, Somerfield PJ, Mühling M (2010) The taxonomic and functional diversity of microbes at a temperate coastal site: a ‘multi-omic’ study of seasonal and diel temporal variation. PLoS One 5(11):e15545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, Cogan TM, Vancanneyt M, Scherer S (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South German red smear cheese. Appl Environ Microbiol 74:2210–2217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez DJ, Haste NM, Hollands A, Fleming TC, Hamby M, Pogliano K, Nizet V, Dorrestein PC (2011) Microbial competition between Bacillus subtilis and Staphylococcus aureus monitored by imaging mass spectrometry. Microbiol-UK 157:2485–2492

    Article  CAS  Google Scholar 

  • Herve-Jimenez L, Guillouard I, Guedon E, Boudebbouze S, Hols P, Monnet V, Maguin E, Rul F (2009) Postgenomic analysis of Streptococcus thermophilus cocultivated in milk with Lactobacillus delbrueckii subsp. bulgaricus: involvement of nitrogen, purine, and iron metabolism. Appl Environ Microbiol 75:2062–2073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huston MA (1994) Biological diversity. The coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Imran M, Desmasures N, Vernoux JP (2010) From undefined red smear cheese consortia to minimal model communities both exhibiting similar anti-listerial activity on a cheese-like matrix. Food Microbiol 27:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Imran M, Bre JM, Guéguen M, Vernoux JP, Desmasures N (2013) Reduced growth of Listeria monocytogenes in two model cheese microcosms is not associated with individual microbial strains. Food Microbiol 33:30–39

    Article  PubMed  Google Scholar 

  • Irlinger F, Mounier J (2009) Microbial interactions in cheese: implications for cheese quality and safety. Curr Opin Biotechnol 20:142–148

    Article  CAS  PubMed  Google Scholar 

  • Kassen R, Buckling A, Bell G, Rainey PB (2000) Diversity peaks at intermediate productivity in a laboratory microcosm. Nature 406:508–512

    Article  CAS  PubMed  Google Scholar 

  • Konopka A (2009) What is microbial community ecology? ISME J 3:1223–1230

    Article  PubMed  Google Scholar 

  • Langenheder S, Lindström ES, Tranvik LJ (2005) Weak coupling between community composition and functioning of aquatic bacteria. Limnol Oceanogr 50:957–967

    Article  Google Scholar 

  • Larpin-Laborde S, Imran M, Bonaïti C, Bora N, Gelsomino R, Goerges S, Irlinger F, Goodfellow M, Ward A, Vancanneyt M, Swings J, Scherer S, Guéguen M, Desmasures N (2011) Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol 57:651–660

    Article  CAS  PubMed  Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant-microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192:215–224

    Article  PubMed  Google Scholar 

  • Leclercq-Perlat MN, Spinnler HE (2010) The type of cheese curds determined the colouring capacity of Brevibacterium and Arthrobacter species. J Dairy Res 77:287–294

    Article  CAS  PubMed  Google Scholar 

  • Leclercq-Perlat MN, Corrieu G, Spinnler HE (2004) The colour of Brevibacterium linens depends on the yeast used for cheese deacidification. J Dairy Sci 87:1536–1544

    Article  CAS  PubMed  Google Scholar 

  • Lu T, Saikaly PE, Oerther DB (2007) Modelling the competition of planktonic and sessile aerobic heterotrophs for complementary nutrients in biofilm reactor. Water Sci Technol 55:227–235

    Article  CAS  PubMed  Google Scholar 

  • Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK, Cantarel BL, Coutinho PM, Henrissat B, Crock LW, Russell A, Verberkmoes NC, Hettich RL, Gordon JI (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106:5859–5864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mansour S, Bailly J, Landaud S, Monnet C, Sarthou AS, Cocaign-Bousquet M, Leroy S, Irlinger F, Bonnarme P (2009) Investigation of associations of Yarrowia lipolytica, Staphylococcus xylosus, and Lactococcus lactis in culture as a first step in microbial interaction analysis. Appl Environ Microbiol 75:6422–6430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maoz A, Mayr R, Scherer S (2003) Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Appl Environ Microbiol 69:4012–4018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mashburn LM, Jett AM, Akins DR, Whiteley M (2005) Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayr R, Fricker M, Maoz A, Scherer S (2004) Anti-listerial activity and biodiversity of cheese surface cultures: influence of the ripening temperature regime. Eur Food Res Technol 218:242–247

    Article  CAS  Google Scholar 

  • Monard C, Mchergui C, Nunan N, Martin-Laurent F, Vieublé-Gonod L (2012) Impact of soil matric potential on the fine-scale spatial distribution and activity of specific microbial degrader communities. FEMS Microbiol Ecol 81:673–683

    Article  CAS  PubMed  Google Scholar 

  • Monnet C, Bleicher A, Neuhaus K, Sarthou A-S, Leclercq-Perlat MN, Irlinger F (2010) Assessment of the anti-listerial activity of microfloras from the surface of smear-ripened cheeses. Food Microbiol 27:302–310

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ (2000) Biodiversity’s ups and downs. Nature 406:463–464

    Article  CAS  PubMed  Google Scholar 

  • Mounier J, Irlinger F, Leclercq-Perlat MN, Sarthou AS, Spinnler HE, Fitzgerald G, Cogan TM (2006) Growth and colour development of some surface ripening bacteria with Debaryomyces hansenii on aseptic cheese curd. J Dairy Res 73:441–448

    Article  CAS  PubMed  Google Scholar 

  • Mounier J, Monnet C, Vallaeys T, Arditi R, Sarthou A-S, Helias A, Irlinger F (2008) Microbial interactions within a cheese microbial community. Appl Environ Microbiol 74:172–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Normand P, Duran R, Le Roux X, Morris C, Poggiale JC (2011) Biodiversité et fonctionnement des écosystèmes microbiens. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P (eds) Ecologie microbienne – microbiologie des milieux naturels et anthropisés. PUPPA, Pau

    Google Scholar 

  • Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodborne Pathog Dis 2:115–129

    Article  CAS  PubMed  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2003) Microbiologie. De Boeck, Bruxelles

    Google Scholar 

  • Retureau E, Callon C, Didienne R, Montel MC (2010) Is microbial diversity an asset for inhibiting Listeria monocytogenes in raw milk cheeses? Dairy Sci Technol 90:375–398

    Article  CAS  Google Scholar 

  • Robinson CJ, Bohannan BJ, Young VB (2010) From structure to function: the ecology of host-associated microbial communities. Microbiol Mol Biol Rev 74:453–476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roth E, Miescher Schwenninger S, Hasler M, Eugster-Meier E, Lacroix C (2010) Population dynamics of two antilisterial cheese surface consortia revealed by temporal temperature gradient gel electrophoresis. BMC Microbiol 10:74

    Article  PubMed Central  PubMed  Google Scholar 

  • Saubusse M, Millet I, Delbes C, Callon C, Montel MC (2007) Application of single strand conformation polymorphism-PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes. Int J Food Microbiol 116:126–135

    Article  CAS  PubMed  Google Scholar 

  • Sei K, Inoue D, Wada K, Mori K, Ike M, Kohno T, Fujita M (2004) Monitoring behaviour of catabolic genes and change of microbial community structures in seawater microcosms during aromatic compound degradation. Water Res 38:4405–4414

    Article  CAS  PubMed  Google Scholar 

  • Sieuwerts S, de Bok FAM, Hugenholtz J, van Hylckama Vlieg JET (2008) Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 74:4997–5007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skandamis PN, Nychas GJ (2012) Quorum sensing in the context of food microbiology. Appl Environ Microbiol 78:5473–5482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres-Vitela MR, Mendoza-Bernardo M, Castro-Rosas J, Gomez-Aldapa CA, Garay-Martinez LE, Navarro-Hidalgo V, Villarruel-López A (2012) Incidence of Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, and staphylococcal enterotoxin in two types of Mexican fresh cheeses. J Food Prot 75:79–84

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Trosvik P, Rudi K, Straetkvern KO, Jakobsen KS, Naes T, Stenseth NC (2010) Web of ecological interactions in an experimental gut microbiota. Environ Microbiol 12:2677–2687

    CAS  PubMed  Google Scholar 

  • Viljoen BC (2001) The interaction between yeasts and bacteria in dairy environments. Int J Food Microbiol 69:37–44

    Article  CAS  PubMed  Google Scholar 

  • Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL (2006) Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol 8:2162–9

    Article  CAS  PubMed  Google Scholar 

  • Young IM, Crawford JW, Nunan N, Otten W, Spiers A (2008) Microbial distribution in soils: physics and scaling. Adv Agron 100:81–121

    Article  Google Scholar 

  • Zhang J, Liu W, Sun Z, Bao Q, Wang F, Yu J, Chen W, Zhang H (2011) Diversity of lactic acid bacteria and yeasts in traditional sourdoughs collected from western regions in Inner Mongolia of China. Food Control 22:767–774

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Desmasures .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Desmasures, N., Imran, M., Cretenet, M. (2015). Structure–Function Relationships of Microbial Communities. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_7

Download citation

Publish with us

Policies and ethics