Skip to main content

Actinobacterial Diversity and Dynamics as Revealed by Denaturing Gradient Gel Electrophoresis

  • Chapter
  • First Online:
Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses
  • 673 Accesses

Abstract

The microbial consortia from red smear cheeses is poorly defined and often biased by culture dependent approaches. A reflection of the true diversity of the surface microflora is necessary to enable the selection of strains which generate the colour, aroma and organoleptic qualities of specific cheeses and to screen for anti-listerial activity. Following the advent of molecular ecological techniques it has become clear that isolation techniques give a biased view of community composition, often missing dominant members of the community and isolating rapidly growing but numerically insignificant strains. In this study identification of the smear flora using molecular techniques revealed immense diversity not known before. Denaturing gradient gel electrophoresis (DGGE) was applied as a high throughput screening strategy to reveal the diversity and dynamics from three stages of ripening of four different European smear cheeses. A combined approach of cloning with DGGE gave similar results showing the robustness of the method. The molecular analysis revealed different complex patterns of bands for each cheese, and changes with ripening stage. Most of the species revealed by molecular analysis using DGGE and sequencing were similar to recognised species of Brevibacterium, Corynebacterium and Microbacterium. Some unexpected species were detected such as Citrococcus and Propionibacterium. The study provided a comprehensive overview of the actinobacterial flora present on red smear cheeses and provides the source information for the future study of anti-listerial properties and to develop defined inocula.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann R (2000) Who is out there? Microbial aspects of biodiversity. Syst Appl Microbiol 23:1–8

    Article  CAS  PubMed  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arfi K, Amarita F, Spinnler HE, Bonnarme P (2003) Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem. J Biotechnol 105:245–253

    Article  CAS  PubMed  Google Scholar 

  • Barksdale L, Lanéelle MA, Pollice MC, Asselineau J, Welby M, Norgard MV (1979) Biological and chemical basis for the reclassification of Microbacterium flavum Orla-Jensen as Corynebacterium flavescens comb. nov. Int J Syst Bacteriol 29:222–233

    Article  CAS  Google Scholar 

  • Becker S, Boger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bockelmann W, HoppeSeyler T, Krusch U, Hoffmann W, Heller KJ (1997a) The microflora of Tilsit cheese. 2. Developments of a surface smear starter culture. Nahrung-Food 41:213–218

    Article  Google Scholar 

  • Bockelmann W, Krusch U, Engel G, Klijn N, Smit G, Heller KJ (1997b) The microflora of Tilsit cheese. 1. Variability of the smear flora. Nahrung-Food 41:208–212

    Article  Google Scholar 

  • Brennan NM, Brown R, Goodfellow M, Ward AC, Beresford TP, Vancanneyt M, Cogan TM, Fox PF (2001) Microbacterium gubbeenense sp. nov., from the surface of a smear-ripened cheese. Int J Syst Evol Microbiol 51:1969–1976

    Article  CAS  PubMed  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci 75:4801–4805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carnio MC, Eppert I, Scherer S (1999) Analysis of the bacterial surface ripening flora of German and French smeared cheeses with respect to their anti-listerial potential. Int J Food Microbiol 47:89–97

    Article  CAS  PubMed  Google Scholar 

  • Chun J (1995) Computer assisted classification and identification of actinomycetes. PhD thesis, Department of Microbiology, University of Newcastle, Newcastle upon Tyne, UK

    Google Scholar 

  • Churchill MM, Hannon JA, McSweeney PLH (2003) Proteolysis at the surface of Tilsit cheese. Milchwissenschaft-Milk Sci Int 58:293–296

    CAS  Google Scholar 

  • Cocolin L, Ercolini D (eds) (2008) Molecular techniques in the microbial ecology of fermented foods, Food Microbiology and Food Safety. Springer, Heidelberg

    Google Scholar 

  • Davenport RJ, Elliott JN, Curtis TP, Upton J (1998) In situ detection of rhodococci associated with activated sludge foams. Antonie Van Leeuwenhoek 74:41–48

    Article  CAS  PubMed  Google Scholar 

  • Dillinger KH (2000) Analysis of neutral volatile aroma components in Tilsit cheese using a combination of dynamic headspace technique, capillary gas chromatography and mass spectrometry. PhD thesis, University Innsbruck, Innsbruck, Austria

    Google Scholar 

  • Drake M, Small CL, Spence KD, Swanson BG (1996) Rapid detection and identification of Lactobacillus spp. in dairy products by using the polymerase chain reaction. J Food Prot 59:1031–1036

    CAS  Google Scholar 

  • Ercolini D (2004) PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. J Microbiol Methods 56:297–314

    Article  CAS  PubMed  Google Scholar 

  • Ercolini D, Hill PJ, Dodd CER (2003a) Development of a fluorescence in situ hybridization method for cheese using a 16S rRNA probe. J Microbiol Methods 52:267–271

    Article  CAS  PubMed  Google Scholar 

  • Ercolini D, Hill PJ, Dodd CER (2003b) Bacterial community structure and location in Stilton cheese. Appl Environ Microbiol 69:3540–3548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan Y, Jin Z, Tong J, Li W, Pasciak M, Gamian A, Liu Z, Huang Y (2002) Rothia amarae sp. nov., from sludge of a foul water sewer. Int J Syst Evol Microbiol 52:2257–2260

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogeny: an appropriate use of the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP- Phylogenetic Inference Package version 3.5.1. Available at http://evolution.genetics.washington.edu/phylip/

  • Fischer SG, Lerman LS (1983) DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A 80:1579–1583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees: a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284

    Article  CAS  PubMed  Google Scholar 

  • FrostegÃ¥rd A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed Central  PubMed  Google Scholar 

  • Gelsomino A, Keijzer-Wolters AC, Cacco G, van Elsas JD (1999) Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Methods 38:1–15

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermie JMH, Wildeboer-Veloo ACM, Grijpstra J, Knol J, Degener JE, Welling GW (2000) Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66:4523–4527

    Article  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism. Academic, New York

    Google Scholar 

  • Kluge AG, Farris FS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–148

    Google Scholar 

  • Maidak BL, Cole JR, Parker CT, Garrity GM Jr, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marsh TL (1999) Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 3:323–327

    Article  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyake T, Watanabe K, Watanabe T, Oyaizu H (1998) Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol Immunol 42:661–667

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G (1999a) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G (1999b) Genetic fingerprinting of microbial communities – present status and future perspectives. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers, proceedings of the 8th international symposium on microbial ecology. Atlantic Canada Society for Microbial Ecology, Halifax

    Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Hottenträger S, Teske A, Wawer C (1996) Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA: a new approach to analyze the genetic diversity of mixed microbial communities. In: Akermanns ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer, Dordrecht

    Google Scholar 

  • Myers RM, Fischer SG, Lerman LS, Maniatis T (1985) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 13:3131–3145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Myers RM, Maniatis T, Lerman LS (1987) Detection and localization of single base changes by denaturing gradient gel electrophoresis. Methods Enzymol 155:501–527

    Article  CAS  PubMed  Google Scholar 

  • Oberreuter H, Charzinski J, Scherer S (2002) Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiol-UK 148:1523–1532

    CAS  Google Scholar 

  • Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR (1986) Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:337–365

    Article  CAS  PubMed  Google Scholar 

  • Orla-Jensen S (1919) The lactic acid bacteria. Host and Son, Copenhagen

    Google Scholar 

  • Ramsing NB, Fossing H, Ferdelman TG, Andersen F, Thamdrup B (1996) Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol 62:1391–1404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saubusse M, Millet L, Delbes C, Callon C, Montel MC (2007) Application of single strand conformation polymorphism – PCR method for distinguishing cheese bacterial communities that inhibit Listeria monocytogenes. Int J Food Microbiol 116:126–135

    Article  CAS  PubMed  Google Scholar 

  • Schubert K, Ludwig W, Springer N, Kroppenstedt RM, Accolas JP, Fiedler F (1996) Two coryneform bacteria isolated from the surface of French Gruykre and Beaufort cheeses are new species of the genus Brachybacterium: Brachybacterium alimentarium sp. nov. and Brachybacterium tyrofernentans sp. nov. Int J Syst Evol Microbiol 46:81–87

    CAS  Google Scholar 

  • Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol Lett 23:1205–1208

    Article  CAS  Google Scholar 

  • Sheffield VC, Cox DR, Lerman LS, Myers RM (1989) Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86:232–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stach JEM, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2002) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  Google Scholar 

  • Steinhaus EA (1941) A study of the bacteria associated with thirty species of insects. J Bacteriol 42:757–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teske A, Sigalevich P, Cohen Y, Muyzer G (1996) Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl Environ Microbiol 62:4210–4215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Novel techniques for analysing microbial diversity in natural and perturbed environments. J Biotechnol 64:53–62

    Article  CAS  PubMed  Google Scholar 

  • Van de Peer Y, DeWachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biol Sci 10:569–570

    PubMed  Google Scholar 

  • Zhang XL, Yan X, Gao PP, Wang LH, Zhou ZH, Zhao LP (2005) Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods 60:1–11

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagamani Bora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bora, N. (2015). Actinobacterial Diversity and Dynamics as Revealed by Denaturing Gradient Gel Electrophoresis. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_4

Download citation

Publish with us

Policies and ethics