Skip to main content

Abstract

Cheese organisms are derived from the dairy environment, from humans and from the environment. Milk and its evolution provide the selective environment for growth of cheese organisms but salt is the major additional selective pressure imposed upon the smear cheese surface. Perhaps the evolutionary history of the actinobacterial phylogenetic clade as “Terrabacter” and selection for resistance to desiccation on aerobic surfaces has provided species able to exploit these environments. But human selection over the history of cheese-making may have selected cheese-microorganism consortia adapted to produce desirable cheese properties, including the ability to outgrow contaminating microorganisms on the cheese-surface and modify the organoleptic properties. The properties of some of the characteristic cheese-related organisms relevant to cheese such as iron availability, catabolism, bacteriocins, osmotolerance and proteolysis of casein are described and compared to related species from other environmental habitats from a genomics perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai L, Chen C, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011) Complete genome sequence of the probiotic strain Lactobacillus casei BD-II. J Bacteriol 193:3160–3161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amarita F, Yvon M, Nardi M, Chambellon E, Delettre J, Bonnarme P (2004) Identification and functional analysis of the gene encoding methionine-gamma-lyase in Brevibacterium linens. Appl Environ Microbiol 70:7348–7354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Archibald F (1983) Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19:29–32

    CAS  Google Scholar 

  • Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G (2006) Insights on the evolution of trehalose biosynthesis. BMC Evol Biol 6:109–124

    PubMed Central  PubMed  Google Scholar 

  • Bastian ED, Brown RJ (1996) Plasmin in milk and dairy products. Int Dairy J 6:435–457

    CAS  Google Scholar 

  • Battistuzzi FU, Feijao A, Hedges SB (2004) A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of the land. BMC Evol Biol 4:44

    PubMed Central  PubMed  Google Scholar 

  • Battistuzzi F, Hedges U, Blair S (2009) A major clade of prokaryotes with ancient adaptations to life on land. Mol Biol Evol 26:335–343

    CAS  PubMed  Google Scholar 

  • Benkerroum N (2010) Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review. Int J Dairy Technol 63:320–338

    CAS  Google Scholar 

  • Bleicher A, Stark T, Hofmann T, Bogovic Matijasic B, Rogelj I, Scherer S, Neuhaus K (2010) Potent antilisterial cell-free supernatants produced by complex red-smear cheese microbial consortia. J Dairy Sci 93:4497–4505

    CAS  PubMed  Google Scholar 

  • Bockelmann W, Fuehr C, Martin D, Heller KJ (1997) Color development by red-smear surface bacteria. Kieler Milchw Forsch 49:285–292

    Google Scholar 

  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolotin A, Quinquis B, Renault P, Sorokin A, Ehrlich SD, Kulakauskas S, Lapidus A, Goltsman E, Mazur M, Pusch GD, Fonstein M, Overbeek R, Kyprides N, Purnelle B, Prozzi D, Ngui K, Masuy D, Hancy F, Burteau S, Boutry M, Delcour J, Goffeau A, Hols P (2004) Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol 22:1554–1558

    CAS  PubMed  Google Scholar 

  • Bonnarme P, Psoni L, Spinnler HE (2000) Diversity of L-methionine catabolism pathways in cheese- ripening bacteria. Appl Environ Microbiol 66:5514–5517

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bora N (2010) Actinomycete diversity of European smear-ripened cheeses. PhD thesis, Newcastle University

    Google Scholar 

  • Boyaval P, Boyaval E, Desmazeaud MJ (1985) Survival of Brevibacterium linens during nutrient starvation and intracellular changes. Arch Microbiol 141:128–132

    CAS  PubMed  Google Scholar 

  • Brantl V, Teschemacher H, Henschen A, Lottspeich F (1979) Novel opioid peptides derived from casein (beta- casomorphins).1. Isolation from bovine casein peptone. Hoppe Seylers Z Physiol Chem 360:1211–1216

    CAS  PubMed  Google Scholar 

  • Brennan NM, Ward AC, Beresford TP, Fox PF, Goodfellow M, Cogan TM (2002) Biodiversity of the bacterial flora on the surface of a smear cheese. Appl Environ Microbiol 68:820–830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown AD (1978) Compatible solutes and extreme water stress in eukaryotic micro-organisms. Adv Microb Physiol 17:181–242

    CAS  PubMed  Google Scholar 

  • Bruinenberg PG, De Roo G, Limsowtin G (1997) Purification and characterization of cystathionine (gamma)-lyase from Lactococcus lactis subsp. cremoris SK11: possible role in flavor compound formation during cheese maturation. Appl. Environ Microbiol 63:561–566

    CAS  Google Scholar 

  • Bruyneel B, van de Woestyne M, Verstraete W (1989) Lactic acid bacteria: micro-organisms able to grow in the absence of available iron and copper. Biotechnol Lett 11:401–406

    CAS  Google Scholar 

  • Cai H, Rodríguez BT, Zhang W, Broadbent JR, Steele JL (2007) Genotypic and phenotypic characterization of Lactobacillus casei strains isolated from different ecological niches suggests frequent recombination and niche specificity. Microbiol-UK 153:2655–2665

    CAS  Google Scholar 

  • Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T, Ross RP (2008) Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190:727–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cañveras JC, Sanchez-Moral S, Sloer V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240

    Google Scholar 

  • Carnio MC, Höltzel A, Rudolf M, Henle T, Jung G, Scherer S (2000) The macrocyclic peptide antibiotic micrococcin P(1) is secreted by the food-borne bacterium Staphylococcus equorum WS 2733 and inhibits Listeria monocytogenes on soft cheese. Appl Environ Microbiol 66:2378–2384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandra G, Chater KF, Bornemann S (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiol-UK 157:1312–1328

    Google Scholar 

  • Chen C, Ai L, Zhou F, Wang L, Zhang H, Chen W, Guo B (2011a) Complete genome sequence of the probiotic bacterium Lactobacillus casei LC2W. J Bacteriol 193:3419–3420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen J, Xia Y, Cheng C, Fang C, Shan Y, Jin G, Fang W (2011b) Genome sequence of the nonpathogenic Listeria monocytogenes serovar 4a strain M7. J Bacteriol 193:5019–5020

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    PubMed  Google Scholar 

  • da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  Google Scholar 

  • Dale SE, Doherty-Kirby A, Lajoie G, Heinrichs DE (2004) Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun 72:29–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76:1161–1171

    CAS  PubMed  Google Scholar 

  • Delorme C, Bartholini C, Luraschi M, Pons N, Loux V, Almeida M, Guedon E, Gibrat JF, Renault P (2011) Complete genome sequence of the pigmented Streptococcus thermophilus strain JIM8232. J Bacteriol 193:5581–5582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dias B, Weimer B (1998) Conversion of methionine to thiols by lactococci, lactobacilli, and brevibacteria. Appl Environ Microbiol 64:3320–3326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dufossé L, Mabon P, Binet A (2001) Assessment of the coloring strength of Brevibacterium linens strains: spectrocolorimetry versus total carotenoid extraction/quantification. J Dairy Sci 84:354–360

    PubMed  Google Scholar 

  • El-Baradei G, Delacroix-Buchet A, Ogier J-C (2007) Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese. Appl Environ Microbiol 73:1248–1255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elshafei AM, Abdel-Fatah OM (2001) Evidence for a non-phosphorylated route of galactose breakdown in cell-free extracts of Aspergillus niger. Enzyme Microb Technol 29:76–83

    CAS  PubMed  Google Scholar 

  • Empadinhas N, da Costa MS (2008) Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol 11:151–156

    CAS  PubMed  Google Scholar 

  • Eppert I, Valdès-Stauber N, Götz H, Busse SS (1997) Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl Environ Microbiol 63:4812–4817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falentin H, Deutsch SM, Jan G, Loux V, Thierry A, Parayre S, Maillard MB, Dherbécourt J, Cousin FJ, Jardin J, Siguier P, Couloux A, Barbe V, Vacherie B, Wincker P, Gibrat JF, Gaillardin C, Lortal S (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1T, a hardy Actinobacterium with food and probiotic applications. PLoS One 5:e11748

    PubMed Central  PubMed  Google Scholar 

  • Ferchichi M, Hemme D, Nardi M, Pamboukdjian N (1985) Production of methanethiol from methionine by Brevibacterium linens CNRZ 918. J Gen Microbiol 131:715–723

    CAS  PubMed  Google Scholar 

  • Fernandez J, Mohedano AF, Gaya P, Medina M, Nuñez M (2000) Purification and properties of two intracellular aminopeptidases produced by Brevibacterium linens SR3. Int Dairy J 10:241–248

    CAS  Google Scholar 

  • Feurer C, Irlinger F, Spinnler HE, Glaser P, Vallaeys T (2004a) Assessment of the rind microbial diversity in a farm house-produced vs a pasteurized industrially produced soft red-smear cheese using both cultivation and rDNA-based methods. J Appl Microbiol 97:546–556

    CAS  PubMed  Google Scholar 

  • Feurer C, Vallaeys T, Corrieu G, Irlinger F (2004b) Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a French soft, red-smear cheese? J Dairy Sci 87:3189–3197

    CAS  PubMed  Google Scholar 

  • Florez AB, Reimundo P, Delgado S, Fernandez E, Alegria A, Guijarro JA, Mayo B (2012) Genome sequence of Lactococcus garvieae IPLA 31405, a bacteriocin-producing, tetracycline-resistant strain isolated from a raw-milk cheese. J Bacteriol 194:5118–5119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Follmann M, Becker M, Ochrombel I, Ott V, Krämer R, Marin K (2009) Potassium transport in Corynebacterium glutamicum is facilitated by the putative channel protein CglK, which is essential for pH homeostasis and growth at acidic pH. J Bacteriol 191:2944–2952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forquin MP, Duvergey H, Proux C, Loux V, Mounier J, Landaud S, Coppee JY, Gibrat JF, Bonnarme P, Martin-Verstraete I, Vallaeys T (2009) Identification of Brevibacteriaceae by multilocus sequence typing and comparative genomic hybridization analyses. Appl Environ Microbiol 75:6406–6409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forquin MP, Hebert A, Roux A, Aubert J, Proux C, Heilier JF, Landaud S, Junot C, Bonnarme P, Martin-Verstraete I (2011) Global regulation of the response to sulfur availability in the cheese-related bacterium Brevibacterium aurantiacum. Appl Environ Microbiol 77:1449–1459

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox PF, McSweeney PLH (2004) Cheese: an overview. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology, 3rd edn. Elsevier, San Diego, pp 1–37

    Google Scholar 

  • Frings E, Holtz C, Kunz B (1993a) Studies about casein degradation by Brevibacterium linens. Milchwissenschaft 48:130–133

    CAS  Google Scholar 

  • Frings E, Kunte HJ, Galinski EA (1993b) Compatible solutes in representatives of the genera Brevibacterium and Corynebacterium: occurrence of tetrahydropyrimidines and glutamine. FEMS Microbiol Lett 109:25–32

    CAS  Google Scholar 

  • Gagnaire V, Molle D, Herrouin M, Leonil J (2001) Peptides identified during emmental cheese ripening: origin and proteolytic systems involved. J Agric Food Chem 49:4402–4413

    CAS  PubMed  Google Scholar 

  • Galaup P, Gautier A, Piriou Y, De Villeblanche A, Valla A, Dufossé L (2007) First pigment fingerprints from the rind of French PDO red-smear ripened soft cheeses Epoisses, Mont d’Or and Maroilles. Innov Food Sci Emerg Technol 8:373–378

    CAS  Google Scholar 

  • Gao B, Gupta RS (2012) Phylogenetic framework and molecular signatures for the main clades of the Phylum Actinobacteria. Microbiol Mol Biol Rev 76:66–112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaucheron F, Le Graet Y, Raulot K, Piot M (1997) Physicochemical characterization of iron-supplemented skim milk. Int Dairy J 7:141–148

    CAS  Google Scholar 

  • Gilliland GL, Oliva MT, Dill J (1991) Functional implications of the three-dimensional structure of bovine chymosin. Adv Exp Med Biol 306:23–37

    CAS  PubMed  Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852

    CAS  PubMed  Google Scholar 

  • Gobbetti M, Smacchi E, Semeraro M, Fox PF, Lanciotti R, Cogan T (2001) Purification and characterization of an extracellular proline iminopeptidase from Corynebacterium variabilis NCDO 2101. J Appl Microbiol 90:449–456

    CAS  PubMed  Google Scholar 

  • Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, Cogan TM, Vancanneyt M, Scherer S (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a south German red smear cheese. Appl Environ Microbiol 74:2210–2217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gómez-Ruiz JA, Ramos M, Recio I (2002) Angiotensin converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int Dairy J 12:697–706

    Google Scholar 

  • Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grissa I, Vergnaud G, Pourcel C (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35:W52–W57

    PubMed Central  PubMed  Google Scholar 

  • Hao P, Zheng H, Yu Y, Ding G, Gu W, Chen S, Yu Z, Ren S, Oda M, Konno T, Wang S, Li X, Ji ZS, Zhao G (2011) Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production. PLoS One 6:e15964

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C (2006) Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl Environ Microbiol 72:2260–2264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henz SR, Huson DH, Auch AF, Nieselt-Struwe K, Schuster SC (2005) Whole-genome prokaryotic phylogeny. Bioinformatics 21:2329–2335

    CAS  PubMed  Google Scholar 

  • Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6:e311

    PubMed Central  PubMed  Google Scholar 

  • Hill RD, Lahav E, Givol D (1974) A rennin-sensitive bond in alpha-S1 B-casein. J Dairy Res 41:147–153

    CAS  PubMed  Google Scholar 

  • Holt C, Carver JA (2012) Darwinian transformation of a ‘scarcely nutritious fluid’ into milk. J Evol Biol 25:1253–1263

    CAS  PubMed  Google Scholar 

  • Irlinger F, Bimet F, Delettre J, Lefevre M, Grimont PAD (2005) Arthrobacter bergerei sp. nov. and Arthrobacter arilaitensis sp. nov., novel coryneform species isolated from the surfaces of cheeses. Int J Syst Evol Microbiol 55:457–462

    CAS  PubMed  Google Scholar 

  • Irlinger F, Loux V, Bento P, Gibrat JB, Straub C, Bonnarme P, Landaud S, Monnet C (2012) Genome sequence of Staphylococcus equorum subsp. equorum Mu2, isolated from a French smear-ripened cheese. J Bacteriol 194:5141–5142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishikawa M, Kodama K, Yasuda H, Okamoto-Kainuma A, Koizumi K, Yamasato K (2007) Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett Appl Microbiol 44:308–313

    CAS  PubMed  Google Scholar 

  • Jans C, Follador R, Lacroix C, Meile L, Stevens MJ (2012) Complete genome sequence of the African dairy isolate Streptococcus infantarius subsp. infantarius strain CJ18. J Bacteriol 194:2105–2106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jenssen H, Hancock RE (2009) Antimicrobial properties of lactoferrin. Biochimie 91:19–29

    CAS  PubMed  Google Scholar 

  • Juillard V, Guillot A, Le Bars D, Gripon JC (1998) Specificity of milk peptide utilization by Lactococcus lactis. Appl Environ Microbiol 64:1230–1236

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato F, Eguchi Y, Nakano M, Oshima T, Murata A (1991) Purification and characterization of linecin A, a bacteriocin of Brevibacterium linens. Agric Biol Chem 55:161–166

    CAS  Google Scholar 

  • Kim DS, Choi SH, Kim DW, Kim RN, Nam SH, Kang A, Kim A, Park HS (2011a) Genome sequence of Lactobacillus cypricasei KCTC 13900. J Bacteriol 193:5053–5054

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim DW, Choi SH, Kang A, Nam SH, Kim DS, Kim RN, Kim A, Park HS (2011b) Draft genome sequence of Lactobacillus zeae KCTC 3804. J Bacteriol 193:5023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein J, Schwarz T, Lentzen G (2007) Ectoine as a natural component of food: detection in red smear cheeses. J Dairy Res 74:446–451

    CAS  PubMed  Google Scholar 

  • Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1:177–187

    CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides – opportunities for designing future foods. Curr Pharm Des 9:1297–1308

    CAS  PubMed  Google Scholar 

  • Krubasik P, Sandmann G (2000) A carotenogenic gene cluster from Brevibacterium linens with novel lycopene cyclase genes involved in the synthesis of aromatic carotenoids. Mol Gen Genet 263:423–432

    CAS  PubMed  Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    CAS  PubMed  Google Scholar 

  • Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15:954–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leclercq-Perlat MN, Corrieu G, Spinnler HE (2004) The colour of Brevibacterium linens depends on the yeast used for cheese deacidification. J Dairy Sci 87:1536–1544

    CAS  PubMed  Google Scholar 

  • Liepke C, Adermann K, Raida M, Magert HJ, Forssmann WG, Zucht HD (2002) Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem 269:712–718

    CAS  PubMed  Google Scholar 

  • Linares DM, Kok J, Poolman B (2010) Genome sequences of Lactococcus lactis MG1363 (revised) and NZ9000 and comparative physiological studies. J Bacteriol 192:5806–5812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Exposito I, Amigo L, Recio I (2012) A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides. Dairy Sci Technol 92:419–438

    CAS  Google Scholar 

  • Lucey BP, Nelson-Rees WA, Hutchins GM (2009) Henrietta Lacks, HeLa cells, and cell culture contamination. Arch Pathol Lab Med 133:1463–1467

    PubMed  Google Scholar 

  • Maisnier-Patin S, Richard J (1995) Activity and purification of linenscin OC2, an antibacterial substance produced by Brevibacterium linens OC2, an orange cheese coryneform bacterium. Appl Environ Microbiol 61:1847–1852

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189:1199–1208

    CAS  PubMed Central  PubMed  Google Scholar 

  • Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616

    PubMed Central  PubMed  Google Scholar 

  • Mallet A, Guéguen M, Kauffman F, Chesneau C, Sesbouë A, Desmasures N (2012) Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int Dairy J 27:13–21

    Google Scholar 

  • Maoz A, Mayr R, Scherer S (2003) Temporal stability and biodiversity of two complex antilisterial cheese-ripening microbial consortia. Appl Environ Microbiol 69:4012–4018

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazé A, Boel G, Zuniga M, Bourand A, Loux V, Yebra MJ, Monedero V, Correia K, Jacques N, Beaufils S, Poncet S, Joyet P, Milohanic E, Casaregola S, Auffray Y, Perez-Martinez G, Gibrat JF, Zagorec M, Francke C, Hartke A, Deutscher J (2010) Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol 192:2647–2648

    PubMed Central  PubMed  Google Scholar 

  • McSweeney PLH (2004) Biochemistry of cheese ripening. Int J Dairy Technol 57:127–144

    CAS  Google Scholar 

  • Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M (2008) BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int 91:965–980

    CAS  PubMed  Google Scholar 

  • Mongodin EF, Shapir N, Daugherty SC, Deboy RT, Emerson JB, Shvartzbeyn A, Radune D, Vamathevan J, Riggs F, Grinberg V, Khouri H, Wackett LP, Nelson KE, Sadowsky MJ (2006) Secrets of soil survival revealed by the genome sequence of Arthrobacter aurescens TC1. PLoS Genet 2:E214

    PubMed Central  PubMed  Google Scholar 

  • Monnet C, Loux V, Gibrat JF, Spinnler E, Barbe V, Vacherie B, Gavory F, Gourbeyre E, Siguier P, Chandler M, Elleuch R, Irlinger F, Vallaeys T (2010) The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS One 5:e15489

    PubMed Central  PubMed  Google Scholar 

  • Monnet C, Back A, Irlinger F (2012) Growth of aerobic ripening bacteria at the cheese surface is limited by the availability of iron. Appl Environ Microbiol 78:3185–3192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mora D, Arioli S, Compagno C (2013) Food environments select microorganisms based on selfish energetic behaviour. Front Microbiol 4:348–354

    PubMed Central  PubMed  Google Scholar 

  • Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O’Sullivan DJ, McKay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M (2008) Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 15:151–161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Motta AS, Brandelli A (2008) Properties and antimicrobial activity of the smear surface cheese coryneform bacterium Brevibacterium linens. Eur Food Res Technol 227:1299–1306

    CAS  Google Scholar 

  • Mounier J, Goerges S, Gelsomino R, Vancanneyt M, Vandemeulebroecke K, Hoste B, Brennan NM, Scherer S, Swings J, Fitzgerald GF, Cogan TM (2006) Sources of the adventitious microflora of a smear-ripened cheese. J Appl Microbiol 101:668–681

    CAS  PubMed  Google Scholar 

  • Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, Morotta F, Jain S, Yadav H (2011) Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct 2:18–27

    CAS  PubMed  Google Scholar 

  • Nam SH, Choi SH, Kang A, Lee KS, Kim DW, Kim RN, Kim DS, Park HS (2012) Genome sequence of Lactobacillus fructivorans KCTC 3543. J Bacteriol 194:2111–2112

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newburg DS (2005) Innate immunity and human milk. J Nutr 135:1308

    CAS  PubMed  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (communities). In: Friedmann EI, Thistle AB (eds) Antarctic microbiology. Wiley, New York, pp 343–412

    Google Scholar 

  • Niewerth H, Schuldes J, Parschat K, Kiefer P, Vorholt JA, Daniel R, Fetzner S (2012) Complete genome sequence and metabolic potential of the quinaldine-degrading bacterium Arthrobacter sp. Rue61a. BMC Genomics 13:534

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noordman WH, Reissbrodt R, Bongers RS, Rademaker JLW, Bockelmann W, Smit G (2006) Growth stimulation of Brevibacterium sp. by siderophores. J Appl Microbiol 101:637–646

    CAS  PubMed  Google Scholar 

  • Oftedal OT (2012) The evolution of milk secretion and its ancient origins. Animal 6:355–368

    CAS  PubMed  Google Scholar 

  • Onraedt A, De Muynck C, Walcarius B, Soetaert W, Vandamme E (2004) Ectoine accumulation in Brevibacterium epidermis. Biotechnol Lett 26:1481–1485

    CAS  PubMed  Google Scholar 

  • Papadimitriou K, Ferreira S, Papandreou NC, Mavrogonatou E, Supply P, Pot B, Tsakalidou E (2012) Complete genome sequence of the dairy isolate Streptococcus macedonicus ACA-DC 198. J Bacteriol 194:1838–1839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pepe O, Sannino L, Palomba S, Anastasio M, Blaiotta G, Villani F, Moschetti G (2010) Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 165:21–32

    CAS  PubMed  Google Scholar 

  • Phadke SM, Deslouches B, Hileman SE, Montelaro RC, Wiesenfeld HC, Mietzner TA (2005) Antimicrobial peptides in mucosal secretions: the importance of local secretions in mitigating infection. J Nutr 135:1289

    CAS  PubMed  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Preston A, Parkhill J, Maskell DJ (2004) The Bordetellae: lessons from genomics. Nat Rev Microbiol 2:379–390

    CAS  PubMed  Google Scholar 

  • Rasko DA, Ravel J, Okstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV, Kolonay J, Nelson WC, Kolsto AB, Fraser CM, Read TD (2004) The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32:977–988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rattray FP, Fox PF (1999) Aspects of enzymology and biochemical properties of Brevibacterium linens relevant to cheese ripening: a review. J Dairy Sci 82:891–909

    CAS  PubMed  Google Scholar 

  • Ricci G, Ferrario C, Borgo F, Rollando A, Fortina MG (2012) Genome sequences of Lactococcus garvieae TB25, isolated from Italian cheese, and Lactococcus garvieae LG9, isolated from Italian rainbow trout. J Bacteriol 194:1249–1250

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards VP, Lang P, Bitar PD, Lefebure T, Schukken YH, Zadoks RN, Stanhope MJ (2011) Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae. Infect Genet Evol 11:1263–1275

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryser ET, Maisnier-Patin S, Gratadoux JJ, Richard J (1994) Isolation and identification of cheese-smear bacteria inhibitory to Listeria spp. Int J Food Microbiol 21:237–246

    CAS  PubMed  Google Scholar 

  • Schäfera J, Jäckelb U, Kämpfer P (2010) Analysis of Actinobacteria from mould-colonized water damaged building material. Syst Appl Microbiol 33:260–268

    Google Scholar 

  • Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments-an updated overview. Adv Appl Microbiol 66:97–139

    CAS  PubMed  Google Scholar 

  • Schröder J, Maus I, Trost E, Tauch A (2011) Complete genome sequence of Corynebacterium variabile DSM 44702 isolated from the surface of smear-ripened cheeses and insights into cheese ripening and flavor generation. BMC Genomics 12:545

    PubMed Central  PubMed  Google Scholar 

  • Schröder J, Glaub A, Schneider J, Trost E, Tauch A (2012) Draft genome sequence of Corynebacterium bovis DSM 20582, which causes clinical mastitis in dairy cows. J Bacteriol 194:4437

    PubMed Central  PubMed  Google Scholar 

  • Sforza S, Cavatorta V, Lambertini F, Galaverna G, Dossena A, Marchelli R (2012) Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J Dairy Sci 95:3514–3526

    CAS  PubMed  Google Scholar 

  • Siragusa S, De Angelis M, Di Cagno R, Rizzello CG, Coda R, Gobbetti M (2007) Synthesis of gamma-aminobutyric acid by lactic acid bacteria isolated from a variety of Italian cheeses. Appl Environ Microbiol 73:7283–7290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smacchi E, Gobbetti M (1998) Purification and characterization of cystathionine γ-lyase from Lactobacillus fermentum DT41. FEMS Microbiol Lett 166:197–202

    CAS  PubMed  Google Scholar 

  • Smacchi E, Gobbetti M, Lanciotti R, Fox PF (1999) Purification and characterization of an extracellular proline iminopeptidase from Arthrobacter nicotianae 9458. FEMS Microbiol Lett 178:191–197

    CAS  PubMed  Google Scholar 

  • Smit G, Smit BA, Engels WJM (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29:591–610

    CAS  PubMed  Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity of three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    PubMed  Google Scholar 

  • Sorek R, Kunin V, Hugenholtz P (2008) CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186

    CAS  PubMed  Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Rainey NL (1997) Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Google Scholar 

  • Strom AR, Kaasen I (1993) Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol 8:205–210

    CAS  PubMed  Google Scholar 

  • Sun Z, Chen X, Wang J, Zhao W, Shao Y, Guo Z, Zhang X, Zhou Z, Sun T, Wang L, Meng H, Zhang H, Chen W (2011a) Complete genome sequence of Lactobacillus delbrueckii subsp. bulgaricus strain ND02. J Bacteriol 193:3426–3427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Z, Chen X, Wang J, Zhao W, Shao Y, Wu L, Zhou Z, Sun T, Wang L, Meng H, Zhang H, Chen W (2011b) Complete genome sequence of Streptococcus thermophilus strain ND03. J Bacteriol 193:793–794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Syed DG, Tang SK, Cai M, Zhi XY, Agasar D, Lee JC, Kim CJ, Jiang CL, Xu LH, Li WJ (2008) Saccharomonospora saliphila sp. nov., a halophilic actinomycete from an Indian soil. Int J Syst Evol Microbiol 58:570–573

    CAS  PubMed  Google Scholar 

  • Tompkins TA, Barreau G, de Carvalho VG (2012) Draft genome sequence of probiotic strain Lactobacillus rhamnosus R0011. J Bacteriol 194:902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Upadhyay VK, McSweeney PLH, Magboul AAA, Fox PF (2004) Proteolysis in cheese during ripening. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology, vol 1, 3rd edn, General aspects. Elsevier, London, pp 391–434

    Google Scholar 

  • Valdés-Stauber N, Scherer S (1994) Isolation and characterization of Linocin M18, a bacteriocin produced by Brevibacterium linens. Appl Environ Microbiol 60:3809–3814

    PubMed Central  PubMed  Google Scholar 

  • Van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessieres P, Weissenbach J, Ehrlich SD, Maguin E (2006) The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103:9274–9279

    PubMed Central  PubMed  Google Scholar 

  • Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W (2011) Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 10(Suppl 1):S6

    PubMed Central  PubMed  Google Scholar 

  • Wang ML, Caetano-Anolles G (2006) Global phylogeny determined by the combination of protein domains in proteomes. Mol Biol Evol 23:2444–2454

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang J, Ahmed Z, Bai X, Wang J (2011) Complete genome sequence of Lactobacillus kefiranofaciens ZW3. J Bacteriol 193:4280–4281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward AC, Bora N (2008) The phylum Actinobacteria. In: Goldman E, Green LH (eds) Practical handbook of microbiology, vol II, 2nd edn. CRC Press, London, pp 375–443

    Google Scholar 

  • Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, van Sinderen D, Kok J (2007) Complete genome sequence of the prototype Lactic Acid Bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinberg ED (1997) The Lactobacillus anomaly: total iron abstinence. Perspect Biol Med 40:578–583

    CAS  PubMed  Google Scholar 

  • Welsh DT, Herbert RA (1999) Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli. FEMS Microbiol Lett 174:57–63

    CAS  PubMed  Google Scholar 

  • Wolf A, Krämer R, Morbach S (2003) Three pathways for trehalose metabolism in Corynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress. Mol Microbiol 49:1119–1134

    CAS  PubMed  Google Scholar 

  • Wynn-Williams DD, Edwards HG, Newton EM, Holder JM (2002) Pigmentation is a survival strategy for ancient and modern photosynthetic microbes under high ultraviolet stress on planetary surfaces. Int J Astrobiol 1:39–49

    CAS  Google Scholar 

  • Yergeau E, Hogues H, Whyte LG, Greer CW (2010) The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J 4:1206–1214

    CAS  PubMed  Google Scholar 

  • Yu ZG, Zhou LQ, Anh VV, Chu KH, Long SC, Deng JQ (2005) Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from complete genomes without sequence alignment. J Mol Evol 60:538–545

    CAS  PubMed  Google Scholar 

  • Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185–201

    CAS  Google Scholar 

  • Zhang ZY, Liu C, Zhu YZ, Zhong Y, Zhu YQ, Zheng HJ, Zhao GP, Wang SY, Guo XK (2009) Complete genome sequence of Lactobacillus plantarum JDM1. J Bacteriol 191:5020–5021

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang W, Yu D, Sun Z, Wu R, Chen X, Chen W, Meng H, Hu S, Zhang H (2010) Complete genome sequence of Lactobacillus casei Zhang, a new probiotic strain isolated from traditional homemade koumiss in Inner Mongolia, China. J Bacteriol 192:5268–5269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Chen Y, Sun Z, Wang J, Zhou Z, Sun T, Wang L, Chen W, Zhang H (2011) Complete genome sequence of Lactobacillus helveticus H10. J Bacteriol 193:2666–2667

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng F, Long Q, Xie J (2012) The function and regulatory network of WhiB and WhiB-like protein from comparative genomics and systems biology perspectives. Cell Biochem Biophys 63:103–108

    CAS  PubMed  Google Scholar 

  • Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang Y, Li Y (2009) Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol 83:597–610

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Monnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Monnet, C., Bora, N., Irlinger, F., Ward, A.C. (2015). Genomics and Functional Role of Actinomycetes on Smear Ripened Cheeses. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_2

Download citation

Publish with us

Policies and ethics