Skip to main content

Abstract

Cheeses are produced at local and industrial scales generating over 1,000 varieties of cheese in Europe. Most cheeses have a complex successional microbial flora through milk fermentation, curd maturation and storage, to cheese maturation. Microorganisms are introduced with raw materials, by deliberate inoculation and from the environment. Microorganisms are responsible for most of the changes which produce cheese, give it its organoleptic properties and contribute to its preservation, but they may include pathogens, of which Listeria monocytogenes is the most common. The activity of aminotransferase, enzymatic degradation of L-methionine and the subsequent formation of volatile sulphur compounds leads to the development of the typical flavour in smear cheese. The characteristic features of cheese evolve from complex interaction of the metabolic activities of the smear cheese flora. So it is essential to define and identify surface microflora to enable the selection of strains that generate the colour, aroma and organoleptic qualities of specific cheeses, and to screen for anti-listerial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann R (2000) Who is out there? Microbial aspects of biodiversity. Syst Appl Microbiol 23:1–8

    Article  CAS  PubMed  Google Scholar 

  • Amarita F, Yvon M, Nardi M, Chambellon E, Delettre J, Bonnarme P (2004) Identification and functional analysis of the gene encoding methionine gamma-lyase in Brevibacterium linens. Appl Environ Microbiol 70:7348–7354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ardö Y (2006) Flavour formation by amino acid catabolism. Biotechnol Adv 24:238–242

    Article  PubMed  Google Scholar 

  • Arfi K, Amarita F, Spinnler HE, Bonnarme P (2003) Catabolism of volatile sulfur compounds precursors by Brevibacterium linens and Geotrichum candidum, two microorganisms of the cheese ecosystem. J Biotechnol 105:245–253

    Article  CAS  PubMed  Google Scholar 

  • Bardócz S (1995) Polyamines in food and their consequences for food quality and human health. Trends Food Sci Technol 6:341–346

    Article  Google Scholar 

  • Becker S, Boger P, Oehlmann R, Ernst A (2000) PCR bias in ecological analysis: a case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl Environ Microbiol 66:4945–4953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benkerroum N (2010) Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review. Int J Dairy Technol 63:320–338

    Article  CAS  Google Scholar 

  • Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM (2001) Recent advances in cheese microbiology. Int Dairy J 11:259–274

    Article  CAS  Google Scholar 

  • Bleicher A, Obermajer T, Matijasic BB, Scherer S, Neuhaus K (2010) High biodiversity and potent anti-listerial action of complex red smear cheese microbial ripening consortia. Ann Microbiol 60:531–539

    Article  Google Scholar 

  • Bockelmann W (2002) Development of defined surface starter cultures for the ripening of smear cheeses. Int Dairy J 12:123–131

    Article  CAS  Google Scholar 

  • Bockelmann W, Hoppe-Seyler T (2001) The surface flora of bacterial smear ripened cheeses from cow’s and goat’s milk. Int Dairy J 11:307–314

    Article  CAS  Google Scholar 

  • Bockelmann W, HoppeSeyler T, Krusch U, Hoffmann W, Heller KJ (1997a) The microflora of Tilsit cheese. 2. Development of a surface smear starter culture. Nahrung-Food 41:213–218

    Article  Google Scholar 

  • Bockelmann W, Krusch U, Engel G, Klijn N, Smit G, Heller KJ (1997b) The microflora of Tilsit cheese. 1. Variability of the smear flora. Nahrung-Food 41:208–212

    Article  Google Scholar 

  • Bockelmann W, Willems KP, Neve H, Heller KH (2005) Cultures for the ripening of smear cheeses. Int Dairy J 15:719–732

    Article  CAS  Google Scholar 

  • Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50:131–149

    Article  CAS  PubMed  Google Scholar 

  • Cocolin L, Ercolini D (2008) Molecular techniques in the microbial ecology of fermented foods. Springer, New York

    Book  Google Scholar 

  • Cogan TM (1995) Flavour production by dairy starter cultures. J Appl Bacteriol (Symposium Suppl) 79:49S–64S

    Article  Google Scholar 

  • Collins YF, McSweeney PLH, Wilkinson MG (2003) Lipolysis and free fatty acid catabolism in cheese: a review of current knowledge. Int Dairy J 13:841–866

    Article  CAS  Google Scholar 

  • Curtin AC, McSweeney PLH (2004) Catabolism of amino acids in cheese during ripening. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology, vol 1, 3rd edn, General aspects. Elsevier, London, pp 435–454

    Google Scholar 

  • Daniel H, Vohwinkel M, Rehner G (1990) Effect of casein and ß- casomorphins on gastrointestinal motility in rats. J Nutr 120:252–257

    CAS  PubMed  Google Scholar 

  • Deetae P, Bonnarme P, Spinnler HE, Helinck S (2007) Production of volatile aroma compounds by bacterial strains isolated from different surface-ripened French cheeses. Appl Microbiol Biotechnol 76:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • del Castillo-Lozano ML, Mansour S, Tâche R, Bonnarme P, Landaud S (2008) The effect of cysteine on production of volatile sulphur compounds by cheese-ripening bacteria. Int J Food Microbiol 22:321–327

    Article  Google Scholar 

  • Demarigny Y, Berger C, Desmasures N, Guéguen M, Spinnler H-E (2000) Flavour sulphides are produced from methionine by two different pathways by Geotrichum candidum. J Dairy Res 67:371–380

    Article  CAS  PubMed  Google Scholar 

  • Donnelly CW (2001) Factors associated with hygienic control and quality of cheeses prepared from raw milk: a review. Bull Int Dairy Fed 369:16–27

    Google Scholar 

  • Engels WJM, Visser S (1996) Development of cheese flavour from peptides and amino acids by cell-free extracts of Lactococcus lactis subsp. cremoris B78 in a model system. Neth Milk Dairy J 50:3–17

    CAS  Google Scholar 

  • Eppert I, Valdes-Stauber N, Gotz H, Busse M, Scherer S (1997) Growth reduction of Listeria spp. caused by undefined industrial red smear cheese cultures and bacteriocin-producing Brevibacterium linens as evaluated in situ on soft cheese. Appl Environ Microbiol 63:4812–4817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox PF, Cogan TM, Guinee TP (2000) Fundamentals of cheese science. Aspen Publishers, Gaithersburg

    Google Scholar 

  • Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed Central  PubMed  Google Scholar 

  • Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70

    Article  PubMed  Google Scholar 

  • Gavrish EI, Krauzova VI, Potekhina NV, Karasev SG, Plotnikova EG, Altyntseva OV, Korosteleva LA, Evtushenko LI (2004) Three new species of brevibacteria- Brevibacterium antiquum sp. nov., Brevibacterium aurantiacum sp. nov. and Brevibacterium permense sp. nov. Mikrobiologiya 73:218–225

    Google Scholar 

  • Gobbetti M, Smacchi E, Semeraro M, Fox PF, Lanciotti R, Cogan T (2001) Purification and characterization of an extracellular proline iminopeptidase from Corynebacterium variabilis NCDO 2101. J Appl Microbiol 90:449–456

    Article  CAS  PubMed  Google Scholar 

  • Goerges S, Mounier J, Rea MC, Gelsomino R, Heise V, Beduhn R, Cogan TM, Vancanneyt M, Scherer S (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South German red smear cheese. Appl Environ Microbiol 74:2210–2217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gravesen A, Jydegaard Axelsen AM, Mendes da Silva J, Hansens TB, Knochel S (2002) Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl Environ Microbiol 68:756–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holt C, Carver JA (2012) Darwinian transformation of a ‘scarcely nutritious fluid’ into milk. J Evol Biol 25:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imran M, Desmasures N, Vernoux JP (2010) From undefined red smear cheese consortia to minimal model communities both exhibiting similar anti-listerial activity on a cheese-like matrix. Food Microbiol 27:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Joseph SJ, Hugenholtz P, Sangwan P, Osborne CA, Janssen PH (2003) Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl Environ Microbiol 69:7210–7215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juck D, Charles T, Whyte LG, Greer CW (2000) Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol Ecol 33:241–249

    Article  CAS  PubMed  Google Scholar 

  • Klijn N, Weerkamp AH, de Vos WM (1995) Detection and characterization of lactose-utilizing Lactococcus spp. in natural ecosystems. Appl Environ Microbiol 61:788–792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Larpin-Laborde S, Imran M, Bonaïti C, Bora N, Gelsomino R, Goerges S, Irlinger F, Goodfellow M, Ward A, Vancanneyt M, Swings J, Scherer S, Guéguen M, Desmasures N (2011) Surface microbial consortia from Livarot, a French smear-ripened cheese. Can J Microbiol 57:651–660

    Article  CAS  PubMed  Google Scholar 

  • Lawrence RC, Creamer LK, Gilles J (1987) Texture development during cheese ripening. J Dairy Sci 70:1748–1760

    Article  CAS  Google Scholar 

  • Lee KD, Lo CG, Warthesen JJ (1996) Removal of bitterness from the bitter peptides extracted from Cheddar cheese with peptidases from Lactococcus lactis ssp cremoris SK11. J Dairy Sci 79:1521–1528

    Article  CAS  Google Scholar 

  • Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  • Leuschner RGK, Hammes WP (1998) Degradation of histamine and tyramine by Brevibacterium linens during surface ripening of Munster cheese. J Food Prot 61:874–878

    CAS  PubMed  Google Scholar 

  • Liepke C, Adermann K, Raida M, Magert HJ, Forssmann WG, Zucht HD (2002) Human milk provides peptides highly stimulating the growth of bifidobacteria. Eur J Biochem 269:712–718

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Nauta A, Francke C, Siezen RJ (2008) Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl Environ Microbiol 74:4590–4600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loessner M, Guenther S, Steffan S, Scherer S (2003) A pediocin producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Appl Environ Microbiol 69:1854–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Exposito I, Amigo L, Recio I (2012) A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides. Dairy Sci Technol 92:419–438

    Article  CAS  Google Scholar 

  • Maisnier-Patin S, Deschamps N, Tatini SR, Richard J (1992) Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72:249–263

    Article  CAS  Google Scholar 

  • Mallet A, Guéguen M, Kauffman F, Chesneau C, Sesbouë A, Desmasures N (2012) Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int Dairy J 27:13–21

    Article  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McSweeney PLH, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheese during ripening. Lait 80:293–324

    Article  CAS  Google Scholar 

  • Meyer-Broseta S, Diot A, Bastian S, Riviere J, Cerf O (2003) Estimation of low bacterial concentration: Listeria monocytogenes in raw-milk. Int J Food Microbiol 80:1–15

    Article  PubMed  Google Scholar 

  • Millet L, Saubusse M, Didienne R, Tessier L, Montel MC (2006) Control of Listeria monocytogenes in raw-milk cheeses. Int J Food Microbiol 108:105–114

    Article  CAS  PubMed  Google Scholar 

  • Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F (2014) Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 177:136–154

    Article  PubMed  Google Scholar 

  • Mucchetti G, Neviani E (2006) Microbiologia e tecnologia lattiero-casearia. Qualità e sicurezza. Tecniche Nuove, Milan

    Google Scholar 

  • Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, Morotta F, Jain S, Yadav H (2011) Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct 2:18–27

    Article  CAS  PubMed  Google Scholar 

  • Novella-Rodriguez S, Veciana-Nogues MT, Izquierdo-Pulido M, Vidal-Carou MC (2003) Distribution of biogenic amines and polyamines in cheese. J Food Sci 68:750–755

    Article  CAS  Google Scholar 

  • Oberreuter H, Charzinski J, Scherer S (2002) Intraspecific diversity of Brevibacterium linens, Corynebacterium glutamicum and Rhodococcus erythropolis based on partial 16S rDNA sequence analysis and Fourier-transform infrared (FT-IR) spectroscopy. Microbiol-UK 148:1523–1532

    CAS  Google Scholar 

  • Oftedal OT (2012) The evolution of milk secretion and its ancient origins. Animal 6:355–368

    Article  CAS  PubMed  Google Scholar 

  • Olivecrona T, Vilaro S, Olivecrona G (2003) Lipases in milk. In: Fox PF, McSweeney PLH (eds) Advanced dairy chemistry, I. Proteins, 3rd edn. Kluwer, New York, pp 473–488

    Chapter  Google Scholar 

  • Pearson LJ, Marth EH (1990) Listeria monocytogenes—threat to a safe food supply: a review. J Dairy Sci 73:912–928

    Article  CAS  PubMed  Google Scholar 

  • Phelan M, Aherne A, FitzGerald RJ, O’Brien NM (2009) Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status. Int Dairy J 19:643–654

    Article  CAS  Google Scholar 

  • Ramsing NB, Fossing H, Ferdelman TG, Andersen F, Thamdrup B (1996) Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol 62:1391–1404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rattray FP, Fox PF, Healy A (1997) Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein. Appl Environ Microbiol 63:2468–2471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rijnkels M (2002) Multispecies comparison of the casein gene loci and evolution of casein gene family. J Mammary Gland Biol Neoplasia 7:327–345

    Article  PubMed  Google Scholar 

  • Roig-Sagues AX, Molina AP, Hernandez-Herrerok MM (2002) Histamine- and tyramine-forming microorganisms in Spanish traditional cheeses. Eur Food Res Technol 215:96–100

    Article  CAS  Google Scholar 

  • Roudot-Algaron F (1996) Le goût des acides aminés, des peptides et des protéines: exemple de peptides sapides dans les hydrolysats de caséines. Lait 76:313–348

    Article  CAS  Google Scholar 

  • Rudolf M, Scherer S (2001) High incidence of Listeria monocytogenes in European red smear cheese. Int J Food Microbiol 63:91–98

    Article  Google Scholar 

  • Samelis J, Kakouri A, Rogga KJ, Savvaidis IN, Kontominas MG (2003) Nisin treatments to control Listeria monocytogenes post-processing contamination on Anthotyros, a traditional Greek whey cheese, stored at 4[deg]C in vacuum packages. Food Microbiol 20:661–669

    Article  CAS  Google Scholar 

  • Savijoki K, Ingmer H, Varmanen P (2006) Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71:394–406

    Article  CAS  PubMed  Google Scholar 

  • Schlimme E, Meisel H (1995) Bioactive peptides derived from milk-proteins—structural, physiological and analytical aspects. Nahrung 39:1–2

    Article  CAS  PubMed  Google Scholar 

  • Sforza S, Cavatorta V, Lambertini F, Galaverna G, Dossena A, Marchelli R (2012) Cheese peptidomics: a detailed study on the evolution of the oligopeptide fraction in Parmigiano-Reggiano cheese from curd to 24 months of aging. J Dairy Sci 95:3514–3526

    Article  CAS  PubMed  Google Scholar 

  • Singh TK, Drake MA, Cadwallader KR (2003) Flavor of cheddar cheese: a chemical and sensory perspective. Compr Rev Food Sci Food Saf 2:166–189

    Google Scholar 

  • Smacchi E, Gobbetti M, Lanciotti R, Fox PF (1999) Purification and characterization of an extracellular proline iminopeptidase from Arthrobacter nicotianae 9458. FEMS Microbiol Lett 178:191–197

    Article  CAS  PubMed  Google Scholar 

  • Sørhaug T, Ordal ZJ (1974) Cell-bound lipase and esterase of Brevibacterium linens. Appl Microbiol 27:607–608

    PubMed Central  PubMed  Google Scholar 

  • Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62:625–630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tabacchioni S, Chiarini L, Bevivino A, Cantale C, Dalmastri C (2000) Bias caused by using different isolation media for assessing the genetic diversity of a natural microbial population. Microbial Ecol 40:169–176

    CAS  Google Scholar 

  • Takeba K, Maruyama T, Matsumoto M (1990) Determination of tyramine in cheese by reserved-phase high-performance liquid chromatography with amperometric detection. J Chromatogr 504:441–444

    Article  CAS  Google Scholar 

  • Teschemacher H, Koch G, Brantl V (1997) Milk protein-derived opioid receptor ligands. Biopolymers 43:99–117

    Article  CAS  PubMed  Google Scholar 

  • Teske A, Sigalevich P, Cohen Y, Muyzer G (1996) Molecular identification of bacteria from a coculture by denaturing gradient gel electrophoresis of 16S ribosomal DNA fragments as a tool for isolation in pure cultures. Appl Environ Microbiol 62:4210–4215

    CAS  PubMed Central  PubMed  Google Scholar 

  • Upadhyay VK, McSweeney PLH, Magboul AAA, Fox PF (2004) Proteolysis in cheese during ripening. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology, vol 1, 3rd edn, General aspects. Elsevier, London, pp 391–434

    Google Scholar 

  • Urbach G (1993) Relations between cheese flavour and chemical composition. Int Dairy J 3:389–422

    Article  CAS  Google Scholar 

  • Urbach G (1997) The chemical and biochemical basis of cheese and milk aroma. In: Law BA (ed) Microbiology and biochemistry of cheese and fermented milk. Blackie Academic and Professional, London, pp 253–298

    Chapter  Google Scholar 

  • Visser S, Hup G, Exterkate FA, Stadhouders J (1983) Bitter flavour in cheese. 2. Model studies on the formation and degradation of bitter peptides by proteolytic enzymes from calf rennet, starter cells and starter cell fractions. Neth Milk Dairy J 37:169–180

    CAS  Google Scholar 

  • Weimer B, Seefeldt K, Dias B (1999) Sulfur metabolism in bacteria associated with cheese. Antonie Van Leeuwenhoek 76:247–261

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yvon M, Rijnen L (2001) Cheese flavour formation by amino acid catabolism. Int Dairy J 11:185–201

    Article  CAS  Google Scholar 

  • Zhang Q, Ren J, Zhao M, Zhao H, Regenstein JM, Li Y, Wu J (2011) Isolation and characterization of three novel peptides from casein hydrolysates that stimulate the growth of mixed cultures of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. J Agric Food Chem 59:7045–7053

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Desmasures .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Desmasures, N., Bora, N., Ward, A.C. (2015). Smear Ripened Cheeses. In: Bora, N., Dodd, C., Desmasures, N. (eds) Diversity, Dynamics and Functional Role of Actinomycetes on European Smear Ripened Cheeses. Springer, Cham. https://doi.org/10.1007/978-3-319-10464-5_1

Download citation

Publish with us

Policies and ethics