Skip to main content

Classical and Quantum Probability: The Two Logics of Science

  • Chapter
  • 1140 Accesses

Part of the book series: On Thinking ((ONTHINKING,volume 4))

Abstract

We review and discuss first briefly the algebraic framework of classical and quantum physics and commutative and noncommutative probability theory. After that we propose a mathematical definition of decoherence sufficiently general to accommodate quantum systems with infinitely many degrees of freedom and give an exhaustive list of possible scenarios that can emerge due to decoherence. We conclude with some messages of quantum science.

The true logic of this world is probability theory

J.C. Maxwell

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Dedicated with admiration and affection to Rudolf Haag on his ninetieth birthday

References

  1. Aharonov Y, Bergmann PG, Lebowitz JL (1964) Time symmetry in the quantum process of measurement. Phys Rev 134:B1410

    Article  ADS  MathSciNet  Google Scholar 

  2. Allingham M (2002) Choice theory: a very short introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  3. Araki H (1999) Mathematical theory of quantum field. Oxford University Press, Oxford

    Google Scholar 

  4. Blanchard Ph, Olkiewicz R (2006) Decoherence as irreversible dynamical process. In: Open quantum systems III. Lecture notes in mathematics, vol 1882, pp 117–160

    Google Scholar 

  5. Blanchard Ph, Olkiewicz R (2003) Decoherence induced transition from quantum to classical dynamics. Rev Math Phys 15:217–243

    Article  MATH  MathSciNet  Google Scholar 

  6. Blanchard Ph, Olkiewicz R (2003) Decoherence-induced continuous pointer states. Phys Rev Lett 96:010403

    Article  Google Scholar 

  7. Blanchard Ph, Olkiewicz R (2003) From quantum to quantum via decoherence. Phys Lett A 314:29–36

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Blanchard Ph, Hellmich M (2012) Decoherence in infinite quantum systems, quantum Africa 2010: theoretical and experimental foundations of recent quantum technology. AIP conference proceedings, vol 1469, pp 2–15

    Google Scholar 

  9. Blanchard Ph et al (2000) Decoherence: theoretical, experimental and conceptual problems. Lecture notes in physics, vol 538. Springer, Berlin

    Google Scholar 

  10. Borel E (1937) Valeur pratique et philosophique des probabilités. Gauthier-Villars, Paris

    Google Scholar 

  11. Bratelli O, Robinson D (1987) Operator algebras and quantum statistical mechanics I, 2nd edn. Springer, New York

    Book  Google Scholar 

  12. Duplantier B et al (2007) Quantum decoherence—poincarè seminar 2005. Progress in mathematical physics. Birkhäuser, Basel

    MATH  Google Scholar 

  13. Emch G (1972) Algebraic methods in statistical mechanics and quantum field theory. Wiley, New York

    MATH  Google Scholar 

  14. Fröhlich J, Schubnel B (2013) Do we understand quantum mechanics—finally? In: Erwin Schrödinger – 50 years after. ESI lectures in mathematics and physics. European Mathematical Society, Zürich, pp 37–84

    Book  Google Scholar 

  15. Giulini D et al (1996) Decoherence and the appearance of a classical world in quantum theory. Springer, Berlin

    Book  MATH  Google Scholar 

  16. Haag E (1996) Local quantum physics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Haag R, Kastler D (1964) An algebraic approach to quantum field theory. J Math Phys 5:848–861

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Haroche S, Raimond JM (2006) Exploring the quantum: atoms, cavities and photons. In: Oxford graduate texts. Oxford University Press, Oxford

    Book  Google Scholar 

  19. Hellmich M (2011) Quantum dynamical semigroups and decoherence. Adv Math Phys 2011:625978

    Article  MathSciNet  Google Scholar 

  20. Laloë F (2012) Do we really understand quantum mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  21. Lugiewicz P, Olkiewicz R (2003) Classical properties of infinite quantum open systems. Commun Math Phys 208:245–265

    MathSciNet  Google Scholar 

  22. Omnés R (1999) Understanding quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  23. Penrose R (1997) The large, the small and the human mind. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  24. Rauch H, Werner A (2000) Neutron interferometry: lessons in experimental quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  25. Sakai S (1991) Operator algebras in dynamical systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  26. Segal IE (1947) Postulates for general quantum mechanics. Ann Math 48:930–948

    Article  MATH  Google Scholar 

  27. Strocchi F (2005) An introduction to the mathematical structure of quantum mechanics. World Scientific, Singapore

    Book  MATH  Google Scholar 

Download references

Acknowledgements

In this paper I reported on results obtained together with Mario Hellmich and Robert Olkiewicz. It is a pleasure to express my gratitude to both of them for the joy of a long and friendly collaboration. I also benefited from numerous discussions with my colleague and friend Jürg Fröhlich during the ZIF-Research Group “The message of Quantum Science—Attempts towards a synthesis” (February–May 2012) at the Center for Interdisciplinary Research (ZiF) of Bielefeld University. I am grateful to Mario Hellmich for precious remarks and Hanne Litschewsky for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Blanchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blanchard, P. (2015). Classical and Quantum Probability: The Two Logics of Science. In: von Müller, A., Filk, T. (eds) Re-Thinking Time at the Interface of Physics and Philosophy. On Thinking, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-10446-1_9

Download citation

Publish with us

Policies and ethics