Skip to main content

Part of the book series: On Thinking ((ONTHINKING,volume 4))

Abstract

We introduce the notion of an extended moment in time, the duron. This is a region of temporal ambiguity which arises naturally in the nature of process which we take to be basic. We introduce an algebra of process and show how it is related to, but different from, the monoidal category introduced by Abramsky and Coecke. By considering the limit as the duration of the moment approaches the infinitesimal, we obtain a pair of dynamical equations, one expressed in terms of a commutator and the other which is expressed in terms of an anti-commutator. These two coupled real equations are equivalent to the Schrödinger equation and its dual.

We then construct a bi-algebra, which allows us to make contact with the thermal quantum field theory introduced by Umezawa. This allows us to link quantum mechanics with thermodynamics. This approach leads to two types of time, one is Schrödinger time, the other is an irreversible time that can be associated with a movement between inequivalent vacuum states. Finally we discuss the relation between our process algebra and the thermodynamic origin of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This example will be appreciated by cricketers everywhere.

  2. 2.

    The label a was suppressed by Dirac leaving it understood provided no ambiguity arose.

  3. 3.

    Symbolically we write \(\rangle \langle \;\times \;\rangle \langle \; =\langle \rangle \;\rangle \langle \;\) with \(\langle \rangle \;= 1\).

  4. 4.

    This is essentially the same idea that led to the notion of the anti-particle “going backwards in time,” but here we are not considering “exotic” anti-matter.

  5. 5.

    In modern parlance these functions are the generating functions of the symplectomorphisms in classical mechanics (see de Gosson [32]).

  6. 6.

    If R is a noncommutative ring, a left ideal is a subset I L such that if a ∈ I L then ra ∈ I L for all r ∈ R.

  7. 7.

    The inner automorphism is a way of expressing the enfolding and unfolding movement.

References

  1. Abramsky S, Coceke B (2004) A categorical semantics of quantum protocol. In: Proceedings of the 19th annual IEEE symposium on logic in computer science, IEEE Computer Science Press, USA. Also available at arXiv:cs/0402130

    Google Scholar 

  2. Baker GA (1958) Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space. Phys Rev 109:2198–2206

    Article  ADS  MathSciNet  Google Scholar 

  3. Bohm D (1965) Space, time and the quantum theory understood in terms of discrete structure process. In: Proceedings of the international conference on elementary particles, Kyoto

    Google Scholar 

  4. Bohm D, Hiley BJ, Stuart AEG (1970) On a new mode of description in physics. Int J Theor Phys 3:171–183

    Article  Google Scholar 

  5. Bohm D (1980) Wholeness and the implicate order. Routledge, London

    Google Scholar 

  6. Bohm D, Hiley BJ (1981) On a quantum algebraic approach to a generalised phase space. Found Phys 11:179–203

    Article  ADS  MathSciNet  Google Scholar 

  7. Bohm D (1986) Time, the implicate order, and pre-space. In: Griffin DR (ed) Physics and the ultimate significance of time. SUNY Press, Albany, pp 177–208

    Google Scholar 

  8. Bohm D (1987) The implicate order and Prigogine’s notions of irreversibility. Found Phys 17:667–677

    Article  ADS  MathSciNet  Google Scholar 

  9. Bohm D, Hiley BJ (1993) The undivided universe: an ontological interpretation of quantum theory. Routledge, London

    Google Scholar 

  10. Bohr N (1961) Atomic physics and human knowledge. Science Editions, New York

    Google Scholar 

  11. Brown MR, Hiley BJ (2000) Schrödinger revisited: an algebraic approach. arXiv: quant-ph/0005025

    Google Scholar 

  12. Celeghini E, Rasetti M, Vitiello G (1992) Quantum dissipation. Ann Phys 215:156–170

    Article  ADS  MathSciNet  Google Scholar 

  13. Celeghini E, De Martino S, De Siena S, Iorio A, Rasetti M, Vitiello G (1998) Thermo field dynamics and quantum algebras. Phys Lett A244:455–461.

    Article  ADS  Google Scholar 

  14. Coecke B (2005) Kindergarten quantum mechanics. arXiv: quant-ph/0510032.

    Google Scholar 

  15. Connes A (1990) Noncommutative geometry. Academic Press, San Diego

    MATH  Google Scholar 

  16. Connes A, Rovelli C (1994) Von Neumann algebra automorphisms and time-thermodynamics relation in general covariant quantum theories. Classical Quantum Gravity 11:2899–2917

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Cramer JG (1986) The transactional interpretation of quantum mechanics. Rev Mod Phys 58:647–687

    Article  ADS  MathSciNet  Google Scholar 

  18. Dahl JP (1983) Dynamical equations for the wigner function. In: Hinze J (ed) Energy storage and redistribution in molecules. Plenum Press, New York, pp 557–571

    Chapter  Google Scholar 

  19. Dirac PAM (1939) A new notation for quantum mechanics. Math Proc Cambridge Phil Soc 35:416–418. doi:10.1017/S0305004100021162

    Article  ADS  MathSciNet  Google Scholar 

  20. Dirac PAM (1947) The principles of quantum mechanics. Oxford University Press, Oxford

    MATH  Google Scholar 

  21. Eddington A (1958) The philosophy of physical science. University of Michigan Press, Ann Arbor

    Google Scholar 

  22. Emch GG (1972) Algebraic methods in statistical mechanics and quantum field theory. Wiley-Interscience, New York

    MATH  Google Scholar 

  23. Fairlie DB, Manogue CA (1991) The formulation of quantum mechanics in terms of phase space functions-the third equation. J Phys A: Math Gen 24:3807–3815

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Feynman RP (1948) Space–time approach to non-relativistic quantum mechanics. Rev Mod Phys 20:367–387

    Article  ADS  MathSciNet  Google Scholar 

  25. Feynman RP, Hibbs AR (1965) Quantum mechanics and path integrals. McGraw-Hill, New York

    MATH  Google Scholar 

  26. Fichte JG (1994) Introductions to the Wissencschaftslehre and other writings (Translated by Breazeale D). Hackett Publishers, Indianapolis, p 26

    Google Scholar 

  27. George C, Prigogine I (1979) Physica A99:369–382

    Article  ADS  MathSciNet  Google Scholar 

  28. George C, Henin F, Mayne F, Prigogine I (1978) Hadronic J 1:520–573

    MathSciNet  Google Scholar 

  29. Galapon EA (2002) Self-adjoint time operator is the rule for discrete semi-bounded Hamiltonians. Proc R Soc Lond A 458:2671–2689. doi:10.1098/rspa.2002.0992

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Galapon EA (2009) Theory of quantum arrival and spatial wave function collapse on the appearance of particle. Proc R Soc A 465:71–86. doi:10.1098/rspa.2008.0278

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Goldstein H (1950) Classical mechanics. Addison-Wesley, Reading

    Google Scholar 

  32. de Gosson M (2001) The principles of newtonian and quantum mechanics. Imperial College Press, London

    Book  MATH  Google Scholar 

  33. de Gosson M (2006) Symplectic geometry and quantum mechanics. Birkhäuser Verlag, Basel

    Book  MATH  Google Scholar 

  34. Grassmann H (1995) A new branch of mathematics: the Ausdehnungslehre of 1844, and other works (trans. by Kannenberg LC). Open Court, Chicago

    Google Scholar 

  35. Hamilton WR (1967) In: Halberstam H, Ingram RE (eds) Mathematical papers. Cambridge University Press, Cambridge

    Google Scholar 

  36. Heisenberg W (1925) Quantum-theoretic re-interpretation of kinematic and mechanical relations. Z Phys 33:879–893

    Article  ADS  MATH  Google Scholar 

  37. Hiley BJ (1991) Vacuum or holomovement. In: Saunders S, Brown HR (eds) The philosophy of vacuum. Clarendon Press, Oxford, pp 217–249

    Google Scholar 

  38. Hiley BJ (1994) The algebra of process. In: Consciousness at the crossroads of cognative science and philosophy, Maribor, pp 52–67

    Google Scholar 

  39. Hiley BJ, Fernandes M (1997) Process and time. In: Atmanspacher H, Ruhnau E (eds) Time, temporality and now. Springer, Berlin, pp 365–383

    Chapter  Google Scholar 

  40. Hiley BJ (2002) From the Heisenberg picture to Bohm: a new perspective on active information and its relation to Shannon information. In: Khrennikov A (ed) Proceedings of the international conference on quantum theory: reconsideration of foundations. Växjö University Press, Sweden, pp 141–162

    Google Scholar 

  41. Hiley BJ (2003) Algebraic quantum mechanics, algebraic Spinors and Hilbert space. In: Bowden KG (ed) Boundaries, scientific aspects of ANPA 24. ANPA, London, pp 149–186

    Google Scholar 

  42. Hiley BJ (2004) Phase space description of quantum phenomena. In: Krennikov A (ed) Quantum theory: reconsiderations of foundations-2. Växjö University Press, Växjö, pp 267–286

    Google Scholar 

  43. Hiley BJ, Quantum reality unveiled through process and the implicate order. In: Bruza PD, Lawless W, van Rijsbergen K, Sofge DA, Coecke B, Clark S (eds) Proceedings of the second quantum interaction symposium [QI-2008]. College Publications, London, pp 1–10

    Google Scholar 

  44. Hiley BJ (2011) Process, distinction, groupoids and Clifford algebras: an alternative view of the quantum formalism. In: Coecke B (ed) New structures for physics. Lecture notes in physics, vol 813. Springer, Heidelberg, pp 705–750

    Chapter  Google Scholar 

  45. Hiley BJ, Callaghan RE (2012) Clifford algebras and the Dirac–Bohm quantum Hamilton–Jacobi equation. Found Phys 42:192–208. doi:10.1007/s10701-011-9558-z

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Iorio A, Vitiello G (1995) Quantum dissipation and quantum groups. Ann Phys (NY) 241:496–506

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Jones V (1999) Planar algebras 1. maths/9909027

    Google Scholar 

  48. Kauffman LH (1980) Complex numbers and algebraic logic. In: 10th international symposium multiple valued logic. IEEE Publication, USA

    Google Scholar 

  49. Kauffman LH (1982) Sign and space. In: Religious experience and scientific paradigms, Proceedings of the IAWSR conference on Inst. Adv. Stud. World Religions. Stony Brook, New York, pp 118–164

    Google Scholar 

  50. Kauffman LH (1987) Self-reference and recursive forms. J Social Bio Struct 10:53–72

    Article  Google Scholar 

  51. Kauffman SA (1996) Lecture 7. In: Investigations: the nature of autonomous agents and the worlds they mutually create

    Google Scholar 

  52. Landi G (1997) An introduction to noncommutative spaces and their geometries. Lecture notes in physics, Monograph 51. Springer, Berlin

    Google Scholar 

  53. Lewis GN (1926) Light waves and light corpuscles. Nature 117:236–238

    Article  ADS  MATH  Google Scholar 

  54. Lewis GN (1926) The nature of light. Proc Nat Acad Sci 12:22–29

    Article  ADS  Google Scholar 

  55. Moyal JE (1949) Quantum mechanics as a statistical theory. Proc Cambridge Phil Soc 45:99–123

    Article  ADS  MATH  MathSciNet  Google Scholar 

  56. Parker-Rhodes AF (1981) The theory of indistinguishables. Reidel, Dordrecht

    Book  MATH  Google Scholar 

  57. Pauli W (1958) In: Flugge S (ed) Handbuch der Physik (Encyclopedia of physics), vol 5. Springer, Berlin, pp 1–168

    Google Scholar 

  58. Peres A (1980) Measurement of time by quantum clocks. Am J Phys 48:552–557

    Article  ADS  Google Scholar 

  59. Prigogine I (1980) From being to becoming. Freeman, San Francisco

    Google Scholar 

  60. Raptis I, Zapatrin RR (2001) Algebraic description of spacetime foam. Classical Quantum Gravity 18:4187–4212

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. Rovelli C (1993) Statistical mechanics of gravity and the thermodynamical origin of time. Classical Quantum Gravity 10:1549–1566

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Schelling FWJ (2010) Von Der Weltseele: Eine Hypothese Der Hohern Physik Zur Erklarung Des Allgemeinen Organismus. Nabu Press, Charleston

    Google Scholar 

  63. Spencer-Brown G (1969) Laws of form. George Allen and Unwin, London

    Google Scholar 

  64. Synge JL (1960) Relativity: the general theory. North-Holland, Amsterdam

    MATH  Google Scholar 

  65. Umezawa H (1993) Advanced field theory: micro, macro and thermal physics. AIP, New York

    Google Scholar 

  66. Vitiello G (1995) Dissipation and memory capacity in the quantum brain model. Int J Mod Phys 9B:973–989

    Article  ADS  Google Scholar 

  67. Vitiello G (1996) Living matter physics and the quantum brain model. Phys Essays 9:548–555

    Article  ADS  Google Scholar 

  68. Whitehead AN (2004) The concept of nature. Dover, New York, p 72

    Google Scholar 

  69. Zapatrin RR (2001) Incidence algebras of simplicial complexes. Pure Math Appl 11:105–118

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the members of the TPRU for their invaluable help in trying to straighten out the ideas expressed in this paper. I would like to thank Albrecht von Müller and Thomas Filk for inviting me to participate in their stimulating meeting at the Parmenides Foundation in Munich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Hiley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hiley, B.J. (2015). Time and the Algebraic Theory of Moments. In: von Müller, A., Filk, T. (eds) Re-Thinking Time at the Interface of Physics and Philosophy. On Thinking, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-10446-1_7

Download citation

Publish with us

Policies and ethics