Skip to main content

Part of the book series: On Thinking ((ONTHINKING,volume 4))

  • 1117 Accesses

Abstract

Irreversible phenomena are of fundamental importance because they characterize a direction of time. Irreversibility has been observed in three different physical situations, namely, in thermodynamics (monotonic increase of entropy), quantum theory (measurement process), and cosmology (black holes and their entropy). There is no consensus on how these three kinds of irreversibility are connected, and whether there is any common ground that can explain them consistently, or if one of them is more fundamental than the others. A solution to the above questions is to work with a physical theory that picks a preferred direction of time. Collapse models, as quantum non-linear and stochastic theories, may provide us with such a solution. After discussing the features of collapse models in detail, we review the phenomenological implications of these models, with particular attention to the aforementioned issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau LD, Lifshitz EM (1981) Statistical physics, Part 1. Pergamon, New York; Non-relativistic quantum mechanics. Elsevier, New York

    Google Scholar 

  2. Uffink J (2003) In: A Huettemann, G Ernst (eds) Time, chance, and reduction. Cambridge University Press, Cambridge (2010); In: Greven A, Keller G, Warnecke G (eds) Entropy. Princeton University Press, Princeton (2003); Forthcoming in Routledge Encyclopedia of Philosophy online; Stud Hist Philos Mod Phys 32:305394 (2001)

    Google Scholar 

  3. Adkins CJ (1983) Equilibrium thermodynamics. Cambridge University Press, New York, NY; Baierlein R (1999) Thermal physics. Cambridge University Press, New York; Huang K (2001) Introduction to statistical physics. Taylor & Francis, London

    Google Scholar 

  4. Loschmidt J (1876) Sitzungsber Kais Akad Wiss Wien Math Naturwiss Classe 73:128–142

    Google Scholar 

  5. Callender C (2001) Thermodynamic Asymmetry in time In: Zalta EN (ed) The stanford encyclopedia of philosophy (Spring 2001 Edition)

    Google Scholar 

  6. Bassi A, Ghirardi GC (2003) Phys Rep 379:257

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Ghirardi GC, Rimini A, Weber T (1986) Phys Rev D 34:470

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Ghirardi GC, Grassi R, Pearle P (1990) Found Phys 20:1271

    Article  ADS  MathSciNet  Google Scholar 

  9. Ghirardi GC, Pearle P, Rimini A (1990) Phys Rev A 42:78

    Article  ADS  MathSciNet  Google Scholar 

  10. Diósi L (1988) J Phys A 21:2885

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Adler SL (2007) J Phys A 40:2935

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Diósi L (1989) Phys Rev A 40:1165

    Article  ADS  Google Scholar 

  13. Diósi L (1990) Phys Rev A 42:5086

    Article  ADS  MathSciNet  Google Scholar 

  14. Belavkin VP, Staszewski P (1989) Phys Lett A 140:359

    Article  ADS  MathSciNet  Google Scholar 

  15. Belavkin VP, Staszewski P (1992) Phys Rev A 45:1347

    Article  ADS  Google Scholar 

  16. Chruściński D, Staszewski P (1992) Phys Scripta 45:193

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Gatarek D, Gisin N (1991) J Math Phys 32:2152

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Halliwell J, Zoupas A (1995) Phys Rev D 52:7294

    Article  ADS  MathSciNet  Google Scholar 

  19. Holevo AS (1996) Probab Theory Relat Fields 104:483

    Article  MATH  MathSciNet  Google Scholar 

  20. Bassi A (2005) J Phys A 38:3173

    Article  MATH  MathSciNet  Google Scholar 

  21. Bassi A, Duerr D (2008) Europhys Lett 84:10005

    Article  ADS  Google Scholar 

  22. Bassi A, Dürr D, Kolb M (2010) Rev Math Phys 22:55

    Article  MATH  MathSciNet  Google Scholar 

  23. Dürr D, Hinrichs G, Kolb M (2011) J Stat Phys 143:1096

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Adler SL, Bassi A (2009) Science 325:275

    Article  Google Scholar 

  25. Bassi A, Ippoliti E, Vacchini B (2005) J Phys A 38:8017

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Adler SL, Bassi A (2007) J Phys A 40:15083

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Adler SL, Bassi A (2008) J Phys A 41:395308

    Article  MathSciNet  Google Scholar 

  28. Bassi A, Ferialdi L (2009) Phys Rev A 80:012116

    Article  ADS  Google Scholar 

  29. Bassi A, Ferialdi L (2009) Phys Rev Lett 103:050403

    Article  ADS  MathSciNet  Google Scholar 

  30. Bassi A, Ghirardi GC (2007) Found Phys 37:169

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Pearle P (1999) Phys Rev A 59:80

    Article  ADS  MathSciNet  Google Scholar 

  32. Tumulka R (2006) J Stat Phys 125:821

    Article  ADS  Google Scholar 

  33. Penrose R (1996) Gen Rel Grav 28:581

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Penrose R (1998) Philos Trans R Soc Lond A 356:1927

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Diosi L (1984) Phys Lett A 105:199

    Article  ADS  Google Scholar 

  36. Diosi L (1987) Phys Lett A 120:377

    Article  ADS  MathSciNet  Google Scholar 

  37. Albert DZ (2000) Time and chance. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  38. Bekenstein JD (1973) Phys Rev D 7:2333

    Article  ADS  MathSciNet  Google Scholar 

  39. Hawking, SW (1975) Commun Math Phys 43:199 [Erratum-ibid. 46:206 (1976)]

    Google Scholar 

  40. Strominger A, Vafa C (1996) Phys Lett B 379:99; Ashtekar A, Baez J, Corichi A, Krasnov K (1998) Phys Rev Lett 80:904; Ashtekar A, Baez JC, Krasnov K (2001) Adv Theor Math Phys 4:1

    Google Scholar 

  41. Sorkin R, Sudarsky D (1999) Class Quant Grav 16:3835–3857; Corichi A, Sudarsky D (2002) Mod Phys Lett A 17:1431–1443; Sudarsky D (2002) Mod Phys Lett A 17:1047–1057

    Article  ADS  MathSciNet  Google Scholar 

  42. DeWitt BS (1967) Phys Rev 160:1113

    Article  ADS  MATH  Google Scholar 

  43. Rovelli C (2007) Quantum gravity. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  44. Isham CJ (1992) In: “Salamanca 1992, Proceedings, Integrable systems, quantum groups, and quantum field theories” at London Imp. Coll. - ICTP-91-92-25 (92/08, rec.Nov.)

    Google Scholar 

  45. Sudarsky D (2011) Int J Mod Phys D 20:509

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Diez-Tejedor A, Sudarsky D (2011) arXiv:1108.4928

    Google Scholar 

  47. Sudarsky D (2011) Int J Mod Phys D 20:821

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Gisin N (1989) Helv Phys Acta 62:363

    MathSciNet  Google Scholar 

  49. Gisin N (1990) Phys Lett A 143:1

    Article  ADS  Google Scholar 

  50. Polchinski J (1991) Phys Rev Lett 66:397

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Gisin N, Rigo M (1995) J Phys A 28:7375

    Article  ADS  MATH  MathSciNet  Google Scholar 

  52. Ghirardi G-C (2000) Found Phys 30:1337

    Article  MathSciNet  Google Scholar 

  53. Perez A, Sahlmann H, Sudarsky D (2006) Class Quant Grav 23:2317

    Article  ADS  MATH  MathSciNet  Google Scholar 

  54. Joos E et al (2004) Decoherence and the appearance of a classical world in quantum mechanics. Springer, Berlin

    Google Scholar 

  55. Breuer HP, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  56. Bassi A, Dürr D (2009) J Phys A 42:485302

    Article  ADS  MathSciNet  Google Scholar 

  57. Adler SL, Ramazanoglu FM (2007) J Phys A 40:13395

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. Fu Q (1997) Phys Rev A 56:1806

    Article  ADS  Google Scholar 

  59. Beuthe M (2003) Phys Rept 375:105

    Article  ADS  MathSciNet  Google Scholar 

  60. Christian J (2005) Phys Rev Lett 95:160403

    Article  ADS  Google Scholar 

  61. Bassi A, Curceanu C, Di Domenico A, Donadi S, Ferialdi L, Hiesmayr B (2013) Found. Phys. 43:813

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Friedman JR et al (1996) Phys Rev Lett 76:3830–3833; del Barco et al (1999) Europhys Lett 47:722–728; Wernsdorfer et al (1997) Phys Rev Lett 79:4014–4017

    Google Scholar 

  63. Nakamura Y et al (1999) Nature 398:786–788; van der Wal CH et al (2000) Science 290:773; Friedman JR et al (2000) Nature (London) 406:43

    Google Scholar 

  64. Deloglise S et al (2008) Nature 455:51014

    Google Scholar 

  65. Hammerer K et al (2010) Rev Mod Phys 82:1041

    Article  ADS  Google Scholar 

  66. Arndt M et al (1999) Nature 401:680; Gerlich S et al (2007) Nat Phys 3:711; Gerlich S et al (2011) Nat Commun 2:263

    Google Scholar 

  67. Hornberger K et al (2011) arXiv:1109.5937

    Google Scholar 

  68. Nimmrichter S et al (2011) Phys Rev A 83:04362

    Article  Google Scholar 

  69. Mancini S et al (1997) Phys Rev A 55:3042–3050; Cohadon PF et al (1999) Phys Rev Lett 83:3174; Marshall W et al (2003) Phys Rev Lett 91:130401; Arcizet O et al (2006) Nature 444:71; Kippenberg TJ, Vahala KJ (2008) Science 321:11726; Schliesser A et al (2008) Nat Phys 4:415–419; Marquardt F, Girvin SM (2009) Physics 2:40; Favero CH, Karrai K (2009) Nat Photon 3:2015

    Google Scholar 

  70. Romero-Isart O et al (2010) New J Phys 12:033015; Romero-Isart O et al (2011) Phys Rev Lett 107:020405; Romero-Isart O (2011) Phys Rev A 84:052121

    Google Scholar 

  71. Riviére R et al (2010) arXiv:1011.0290

    Google Scholar 

  72. Mukhanov VF (2005) Physical foundations of cosmology. Cambridge University Press, Cambridge; Weinberg S (2008) Cosmology. Oxford University Press, Oxford; Dodelson S (2003) Modern cosmology. Academic Press, Amsterdam

    Google Scholar 

  73. Komatsu E et al (2011)Astrophys J Suppl 192:18

    Article  ADS  Google Scholar 

  74. Starobinsky AA (1980) Phys Lett B 91:99; Guth AH (1981) Phys Rev D 23:347; Linde AD (1982) Phys Lett B 108:389; Albrecht A, Steinhardt PJ (1982) Phys Rev Lett 48:1220

    Google Scholar 

  75. Mukhanov VF, Chibisov GV (1981) JETP Lett 33:532, [Pisma Zh Eksp Teor Fiz 33:549 (1981)]; Hawking SW (1982) Phys Lett B 115:295; Starobinsky AA (1982) Phys Lett B 117:175; Guth AH, Pi SY (1982) Phys Rev Lett 49:1110

    Google Scholar 

  76. Mukhanov VF (2005) Physical foundations of cosmology, Section 8.3.3. Cambridge University Press, Cambridge; Weinberg S (2008) Cosmology, Section 10.1. Oxford University Press, Oxford; Lyth DH, Liddle AR (2009) The primordial density perturbation: cosmology, inflation and the origin of structure, Section 24.2. Cambridge University Press, Cambridge; Penrose R (2004) The road to reality: a complete guide to the laws of the universe, Section 30.14. Vintage books, New York

    Google Scholar 

  77. Pinto-Neto N, Santos G, Struyve W (2011) arXiv:1110.1339

    Google Scholar 

  78. Kiefer C, Joos E (1998) arXiv:quant-ph/9803052; Kiefer C, Lesgourgues J, Polarski D, Starobinsky AA (1998) Class Quant Grav 15:L67. arXiv:gr-qc/9806066; Kiefer C (2000) Nucl Phys Proc Suppl 88:255. arXiv:astro-ph/0006252; Kiefer C, Polarski D (2009) Adv Sci Lett 2:164. arXiv:0810.0087

    Google Scholar 

  79. De Unanue A, Sudarsky D (2008) Phys Rev D 78:043510

    Article  ADS  Google Scholar 

  80. Leon G, Sudarsky D (2010) Class Quant Grav 27:225017

    Article  ADS  MathSciNet  Google Scholar 

  81. Leon G, De Unanue A, Sudarsky D (2011) Class Quant Grav 28:155010

    Article  ADS  Google Scholar 

  82. Diez-Tejedor A, Leon G, Sudarsky D (2011) arXiv:1106.1176

    Google Scholar 

  83. Leon G, Sudarsky D (2011) arXiv:1109.0052

    Google Scholar 

  84. Landau SJ, Scoccola CG, Sudarsky D (2011) arXiv:1112.1830

    Google Scholar 

  85. Penrose R (2004) Road to reality: a complete guide to the laws of the universe, Section 30. Vintage books, New York

    Google Scholar 

  86. Wald RM (1994) Quantum field theory in curved spacetime and black hole thermodynamics. University of Chicago Press, Chicago

    MATH  Google Scholar 

Download references

Acknowledgements

MB acknowledges partial financial support from National Elite Foundation, Iran, and from the K.N. Toosi University, Tehran, Iran; he also acknowledges the hospitality from The Abdus Salam ICTP, where this work was carried out. AB, LF, and SD acknowledge partial financial support from MIUR (PRIN 2008), INFN, COST (MP1006) and the John Templeton Foundation project ‘Quantum Physics and the Nature of Reality.’ GL acknowledges financial support by CONACyT postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bahrami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bahrami, M., Bassi, A., Donadi, S., Ferialdi, L., León, G. (2015). Irreversibility and Collapse Models. In: von Müller, A., Filk, T. (eds) Re-Thinking Time at the Interface of Physics and Philosophy. On Thinking, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-10446-1_6

Download citation

Publish with us

Policies and ethics