Skip to main content

Relational Events and the Conflict Between Relativity and the Collapse

  • Chapter
Re-Thinking Time at the Interface of Physics and Philosophy

Part of the book series: On Thinking ((ONTHINKING,volume 4))

  • 1130 Accesses

Abstract

It is shown that some of the conundrums of quantum theory, which are related to the locality structure of space–time, appear less astounding when space–time is considered as relational, and the localization of an event is defined by the relations this event has to other events. In particular, a relational space (or a relational space–time) might indicate how the dilemma of Bell’s theorem—either quantum theory has no “elements of reality” or it is non-local—can be avoided. Furthermore, it is argued that quantum theory may be more amiable to the implementation of a “present” as compared to classical physics. This present should be considered not as the point-like separation between a future and a past but rather as a temporally extended process related to decoherence. Two models of how a notion of the present can be combined with a relational theory of space–time are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert DZ, Galchen R (2009) Was Einstein Wrong?: a quantum treat to special relativity. Sci Am 300(3):26–33

    Article  Google Scholar 

  2. Ambjørn J, Jurkiewicz J, Loll R (2008) The self-organizing quantum universe. Sci Am 299(1):24–31

    Google Scholar 

  3. Aspect A, Dalibard J, Roger G (1982) Experimental test of Bell’s inequalities using time-varying analyzers. Phys Rev Lett 49:1804–1807

    Article  ADS  MathSciNet  Google Scholar 

  4. Banks T (1998) Matrix theory. Nucl Phys Proc Suppl 67:180–224

    Article  ADS  MATH  Google Scholar 

  5. Barbour J, Bertotti B (1982) Mach’s principle and the structure of dynamical theories. Proc R Soc (Lond) A 382:295

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Barbour J, Smolin L (1992) Extremal variety as the foundation of a cosmological quantum theory, arXiv: hep-th/9203041v1

    Google Scholar 

  7. Bauer M (1983) A time operator in quantum mechanics. Ann Phys 150(1):1–21. Bauer M, A dynamical time operator in relativistic quantum mechanics. arXive 0908.2789

    Google Scholar 

  8. Bell JS (1966) On the problem of hidden variables in quantum theory. Rev Mod Phys 38:447

    Article  ADS  MATH  Google Scholar 

  9. Billoire A, David F (1986) Scaling properties of randomly triangulated planar random surfaces: a numerical study. Nucl Phys B 275:617

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bohm DJ (1952) A suggested interpretation of the quantum theory in terms of “Hidden” variables I & II. Phys Rev 85:166, 180

    Article  ADS  Google Scholar 

  11. Bombelli L, Lee J, Meyer D, Sorkin RD (1987) Space–time as a causal set. Phys Rev Lett 59(5):521

    Article  ADS  MathSciNet  Google Scholar 

  12. Clark Ch (2010) Quantum theory in discrete spacetime. Preprint UCLA

    Google Scholar 

  13. Clarke S (1990) Der Briefwechsel mit Gottfried Wilhelm Leibniz von 1715/1716. Felix Meiner Verlag, Hamburg

    Google Scholar 

  14. Cushing JT, Fine A, Goldstein S (1996) Bohmian mechanics and quantum theory: an appraisal. Boston studies in the philosophy of science, vol 184. Springer, Netherlands

    Book  Google Scholar 

  15. Descartes R (1992) Die Prinzipien der Philosophie (1644). deutscheÜbersetzung, Hamburg

    Google Scholar 

  16. deWitt BS (1970) Quantum mechanics and reality. Phys Today 23:30–35

    Article  Google Scholar 

  17. Einstein A (1920) Die hauptss̈chlichen Gedanken der Relativitätstheorie (The principal ideas of the theory of relativity); Albert Einstein Archives, Call Number 2-69

    Google Scholar 

  18. Einstein A, Podolsky B, Rosen N (1935) Can quantum-mechanical description of physical reality be considered complete? Phys Rev 47:777

    Article  ADS  MATH  Google Scholar 

  19. Ellis GFR, Rothman T (2010) Time and spacetime: the crystallizing block universe. Int J Theor Phys 49:988–1003

    Article  MATH  MathSciNet  Google Scholar 

  20. Everett H (1957) “Relative State” formulation of quantum mechanics. Rev Mod Phys 29:454–462

    Article  ADS  MathSciNet  Google Scholar 

  21. Fierz M (1954) über den Ursprung und die Bedeutung der Lehre Isaac Newtons vom absoluten Raum. Gesnerus 11:62

    Google Scholar 

  22. Filk T (1992) Equivalence of massive propagator distance and mathematical distance on graphs. Mod Phys Lett A 7:2637–2645

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Filk T (2001) Proper time and Minkowski structure on causal graphs. Classical Quantum Gravity 18:2785–2795

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Filk T (2005) The problem of locality and a relational interpretation of the wave function. In: Adenier G, Khrennikov AYu, Nieuwenhuizen ThM (eds) Quantum theory: reconsideration of foundations – 3. AIP Conference Proceedings Vol. 750, Melville, New York

    Google Scholar 

  25. Filk T (2006) Relational interpretation of the wave function and a possible way around Bell’s theorem. Int J Theor Phys 45(6):1166–1180

    Article  MathSciNet  Google Scholar 

  26. Filk T (2013) Temporal non-locality. Found Phys 43:533–547

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Filk T, von Müller A (2010) A categorical framework for quantum theory. Ann Phys 522:783–801

    Article  MathSciNet  Google Scholar 

  28. Gambini R, Pullin J (2005) Discrete space–time. arXiv preprint gr-qc/0505023

    Google Scholar 

  29. Gardner M (1970) Mathematical games – the fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223:120

    Article  Google Scholar 

  30. Goto T, Yamaguchi K, Sudo N (1981) On the time operator in quantum mechanics. Prog Theory Phys 66(5):1525–1538

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Education, Inc., Upper Saddle River, New Jersey 07458

    Google Scholar 

  32. Hiley B (2001) Towards a dynamics of moments: the role of algebraic deformation and inequivalent vacuum states. In: Bowden KG (ed) Correlations. Proc ANPA, vol 23. pp 104–134

    Google Scholar 

  33. Hiley B (2015) Parmenides workshop “The Forgotten Present”, April 29th–May 1st, 2010. In: Drieschner M (ed) Present and future in quantum mechanics. Springer, Heidelberg

    Google Scholar 

  34. Immirizi G (1997) Quantum gravity and Regge calculus. Nuclear Physics B – Proceedings Supplements 57:65–72

    Google Scholar 

  35. Leibniz GW (1714) Principles of nature and grace, based on reason. In: The philosophical works of Leibnitz. Tuttle, Morehouse & Taylor, Publishers, 1890

    Google Scholar 

  36. Muga JG, Leavens CR (2000) Arrival time in quantum mechanics. Phys Rep 338:353

    Article  ADS  MathSciNet  Google Scholar 

  37. Newton I (1988) De Gravitatione et aequipondo fluidorum. ¨ber die Gravitation und das Gleichgewicht von Flüssigkeiten (around 1670), Klosterman Texte Philosophie, Frankfurt am Main

    Google Scholar 

  38. Nikonov A, von Müller A (2015) Autogenetic network theory. Springer, Heidelberg

    Google Scholar 

  39. Olkhovsky VS, Recami E, Gerasimchuk AJ (1974) Time operator in quantum mechanics. Il Nuovo Cimento 22 A(2):263–278

    Google Scholar 

  40. Pauli W (1933) Die allgemeinen Prinzipien der Wellenmechanik. Handbuch der Physik Bd. XXIV, 1:140

    Google Scholar 

  41. Rovelli C (1998) Relational quantum mechanics. Int J Theor Phys 35:1637–1678

    Article  MathSciNet  Google Scholar 

  42. Rovelli C, Smolin L (1995) Spin networks and quantum gravity. Phys Rev D 53:5743

    Article  ADS  MathSciNet  Google Scholar 

  43. Scully MO, Drühl K (1982) Quantum eraser – a proposed photon correlation experiment concerning observation and ‘delayed choice’ in quantm mechanics. Phys Rev A 25:2208

    Article  ADS  Google Scholar 

  44. Scully MO, Englert BG, Walther H (1991) Quantum optical tests of complementarity. Nature (London) 351:111

    Article  ADS  Google Scholar 

  45. Sorkin RD (2009) Light, links and causal sets. J Phys Conf Ser 174:012018

    Article  ADS  Google Scholar 

  46. Šťovíček P, Tolar J (1984) Quantum mechanics in discrete space–time. Rep Math Phys 20(2):157

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Thiemann T (2003) Lectures on loop quantum gravity. Lect Notes Phys 631:41–135

    Article  ADS  MathSciNet  Google Scholar 

  48. Wang ZY, Xiong CD (2007) How to introduce time operator. Ann Phys 322:2304–2314

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Whitehead AN (1979) Process and reality: an essay in cosmology. The Free Press, New York

    Google Scholar 

Download references

Acknowledgements

I acknowledge many stimulating discussions during the Parmenides-Workshop “The Forgotten Present” (Munich-Pullach, April 29th – May 2nd, 2010) with all participants, in particular with Julian Barbour, Avshalom Elitzur, Domenico Giulini, Basil Hiley, and Hans Primas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Filk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Filk, T. (2015). Relational Events and the Conflict Between Relativity and the Collapse. In: von Müller, A., Filk, T. (eds) Re-Thinking Time at the Interface of Physics and Philosophy. On Thinking, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-10446-1_3

Download citation

Publish with us

Policies and ethics