Skip to main content

Nested Constraint Programs

  • Conference paper
Principles and Practice of Constraint Programming (CP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8656))

Abstract

Many real world discrete optimization problems are expressible as nested problems where we solve one optimization or satisfaction problem as a subproblem of a larger meta problem. Nested problems include many important problem classes such as: stochastic constraint satisfaction/ optimization, quantified constraint satisfaction/optimization and minimax problems. In this paper we define a new class of problems called nested constraint programs (NCP) which include the previously mentioned problem classes as special cases, and describe a search-based CP solver for solving NCP’s.We briefly discuss how nogood learning can be used to significantly speedup such an NCP solver. We show that the new solver can be significantly faster than existing solvers for the special cases of stochastic/ quantified CSP/COP’s, and that it can solve new types of problems which cannot be solved with existing solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tarim, A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-Based Approach. Constraints 11, 53–80 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Walsh, T.: Stochastic Constraint Programming.. In: van Harmelen, F. (ed.) ECAI, pp. 111–115. IOS Press (2002)

    Google Scholar 

  3. Benedetti, M., Lallouet, A., Vautard, J.: Quantified constraint optimization. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 463–477. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. (JAIR) 26, 371–416 (2006)

    Google Scholar 

  5. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-aided Design, pp. 442–449. ACM (2002)

    Google Scholar 

  6. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation. Constraints 14, 357–391 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M., Wallace, M.: The design of the Zinc modelling language. Constraints 13, 229–267 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schwenk, A.J.: Take-away games. Fibonacci Quarterly 8, 225–234 (1970)

    MathSciNet  Google Scholar 

  10. Chen, H.: The Computational Complexity of Quantified Constraint Satisfaction. PhD thesis, Cornell University (2004)

    Google Scholar 

  11. Samulowitz, H.: Solving Quantified Boolean Formulas. PhD thesis, University of Toronto (2007)

    Google Scholar 

  12. Benedetti, M., Lallouet, A., Vautard, J.: Reusing CSP propagators for qCSPs. In: Azevedo, F., Barahona, P., Fages, F., Rossi, F. (eds.) CSCLP. LNCS (LNAI), vol. 4651, pp. 63–77. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Schulte, C., Stuckey, P.J.: Effcient constraint propagation engines. ACM Transactions on Programming Languages and Systems (TOPLAS) 31, 2 (2008)

    Article  Google Scholar 

  14. Chu, G., Stuckey, P.J.: Inter-instance nogood learning in constraint programming. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 238–247. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Pralet, C., Verfailles, G., Schiex, T.: An algebraic graphical model for decision with uncertainties, feasibilities, and utilities. Journal of Artificial Intelligence Research 29, 421–489 (2007)

    MATH  MathSciNet  Google Scholar 

  16. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 167–182. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chu, G., Stuckey, P.J. (2014). Nested Constraint Programs. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10428-7_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10427-0

  • Online ISBN: 978-3-319-10428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics