Skip to main content

On Backdoors to Tractable Constraint Languages

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8656))

Abstract

In the context of CSPs, a strong backdoor is a subset of variables such that every complete assignment yields a residual instance guaranteed to have a specified property. If the property allows efficient solving, then a small strong backdoor provides a reasonable decomposition of the original instance into easy instances. An important challenge is the design of algorithms that can find quickly a small strong backdoor if one exists. We present a systematic study of the parameterized complexity of backdoor detection when the target property is a restricted type of constraint language defined by means of a family of polymorphisms. In particular, we show that under the weak assumption that the polymorphisms are idempotent, the problem is unlikely to be FPT when the parameter is either r (the constraint arity) or k (the size of the backdoor) unless P = NP or FPT = W[2]. When the parameter is k + r, however, we are able to identify large classes of languages for which the problem of finding a small backdoor is FPT.

Supported by ANR Project ANR-10-BLAN-0210.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJCAI 2003, pp. 1173–1178. Morgan Kaufmann Publishers Inc., San Francisco (2003)

    Google Scholar 

  2. Nishimura, N., Ragde, P., Szeider, S.: Detecting Backdoor Sets with Respect to Horn and Binary Clauses. In: SAT (2004)

    Google Scholar 

  3. Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Živný, S.: Backdoors into heterogeneous classes of sat and csp. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, AAAI 2014 (2014)

    Google Scholar 

  4. Gaspers, S., Szeider, S.: Strong Backdoors to Bounded Treewidth SAT. In: FOCS, pp. 489–498 (2013)

    Google Scholar 

  5. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and constraint satisfaction: A study through datalog and group theory. SIAM Journal on Computing 28(1), 57–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Logic 12(4), 24:1–24:66 (2011)

    Google Scholar 

  7. Barto, L., Bulin, J.: Csp dichotomy for special polyads. IJAC 23(5), 1151–1174 (2013)

    MATH  MathSciNet  Google Scholar 

  8. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency methods. J. ACM 61(1), 3:1–3:19 (2014)

    Article  MathSciNet  Google Scholar 

  9. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)

    Google Scholar 

  10. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency, and closure. Artificial Intelligence 101, 101–1 (1998)

    Google Scholar 

  11. Idziak, P., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability and learnability arising from algebras with few subpowers. SIAM Journal on Computing 39(7), 3023–3037 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bulatov, A.A.: Combinatorial problems raised from 2-semilattices. Journal of Algebra 298(2), 321–339 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artificial Intelligence 79, 327–339 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency methods. Journal of the ACM (JACM) 61(1), 3 (2014)

    Article  MathSciNet  Google Scholar 

  16. Kozik, M., Krokhin, A., Valeriote, M., Willard, R.: Characterizations of several maltsev conditions (2013) (preprint)

    Google Scholar 

  17. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors to satisfiability: dynamic sub-solvers and learning during search. Annals of Mathematics and Artificial Intelligence, 1–33 (2014)

    Google Scholar 

  18. Bessiere, C., Carbonnel, C., Hebrard, E., Katsirelos, G., Walsh, T.: Detecting and exploiting subproblem tractability. In: International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China (August 2013)

    Google Scholar 

  19. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor. Comput. Sci. 411(40-42), 3736–3756 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Downey, R.G., Fellows, M.R.: Parameterized Complexity, 530 p. Springer (1999)

    Google Scholar 

  21. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)

    Google Scholar 

  22. Carbonnel, C., Cooper, M.C., Hebrard, E.: On backdoors to tractable constraint languages (extended paper), http://arxiv.org/abs/1404.3675

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Carbonnel, C., Cooper, M.C., Hebrard, E. (2014). On Backdoors to Tractable Constraint Languages. In: O’Sullivan, B. (eds) Principles and Practice of Constraint Programming. CP 2014. Lecture Notes in Computer Science, vol 8656. Springer, Cham. https://doi.org/10.1007/978-3-319-10428-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10428-7_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10427-0

  • Online ISBN: 978-3-319-10428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics