Skip to main content

Energy Balance

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

The complexity of prominence formation and structure is intimately related to energy balance. Fundamental properties of these structures are still being investigated and understanding the processes involved with heating and cooling of prominence material, which is partially ionized, is a critical piece of the puzzle. It is important to understand the nature of the chromosphere–corona transition region (CCTR) and, more specifically, the interplay among mechanical heating, radiative cooling, radiative heating, and thermal conduction that determines the location and structure of this transition region. For prominences to exist they need mechanical equilibrium (which is described by the equations of magneto-hydrostatics) and detailed energy balance, in which steady radiative cooling is balanced by heating mechanisms. Aspects of mechanical and energy balance have been thoroughly studied in the past, but models have difficulty accounting for both of these equilibria self-consistently on scales ranging from the central cool parts of the prominence into the corona.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfven, H. (1947). Magneto hydrodynamic waves, and the heating of the solar corona. Monthly Notices of the Royal Astronomical Society, 107, 211.

    Article  ADS  Google Scholar 

  • Alvarez, M. (1980). Energy balance from the chromosphere–corona transition region. Astrophysical Journal, 240, 322.

    Article  ADS  Google Scholar 

  • Antiochos, S. K., & Klimchuk, J. A. (1991). A model for the formation of solar prominences. Astrophysical Journal, 378, 372.

    Article  ADS  Google Scholar 

  • Anzer, U., & Heinzel, P. (1999). The energy balance in solar prominences. Astronomy and Astrophysics, 349, 974.

    ADS  Google Scholar 

  • Anzer, U., & Heinzel, P. (2000). Energy considerations for solar prominences with mass inflow. Astronomy and Astrophysics, 358, L75.

    ADS  Google Scholar 

  • Athay, R. G. (1966). Radiative energy loss from the solar chromosphere and corona. Astrophysical Journal, 146, 223.

    Article  ADS  Google Scholar 

  • Ballester, J. L. (2006). Seismology of prominence-fine structures: Observations and theory. Space Science Reviews, 122, 129.

    Article  ADS  Google Scholar 

  • Ballester, J. L. (2014). Magnetism and dynamics of prominences: MHD waves. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 257–294). New York: Springer.

    Google Scholar 

  • Bradshaw, S. J. (2009). A numerical tool for the calculation of non-equilibrium ionisation states in the solar corona and other astrophysical plasma environments. Astronomy and Astrophysics, 502, 409.

    Article  ADS  Google Scholar 

  • Braginskii, S. I. (1965). Transport processes in plasmas. In M. A. Leontovich (Ed.), Reviews of plasma physics (Vol. I, p. 205). New York: Consultants Bureau.

    Google Scholar 

  • Carlsson, M., & Leenaarts, J. (2012). Approximations for radiative cooling and heating in the solar chromosphere. Astronomy and Astrophysics, 539, 10.

    Article  Google Scholar 

  • Carlsson, M., & Stein, R. F. (2002). Dynamic hydrogen ionization. Astrophysical Journal, 572, 626.

    Article  ADS  Google Scholar 

  • Chiuderi Drago, F., & Landi, E. (2002). The prominence–corona and the filament–corona transition region: Is there any difference? Solar Physics, 206, 315.

    Article  ADS  Google Scholar 

  • Chiuderi, C., & Chiuderi Drago, F. (1991). Energy balance in the prominence–corona transition region. Solar Physics, 132, 81–94.

    Article  ADS  Google Scholar 

  • De Pontieu, B., et~al. (2007). Chromospheric Alfvénic waves strong enough to power the solar wind. Science, 318, 1574.

    Article  ADS  Google Scholar 

  • Engvold, O., Kjeldseth-Moe, O., Bartoe, J.-D. F., & Brueckner, G. E. (1987). Observations and modeling of the prominence/corona transition region, In ESA, proceedings of the 21st ESLAB symposium on small scale plasma processes in the solar chromosphere/corona, interplanetary medium and planetary magnetospheres (p. 21).

    Google Scholar 

  • Fan, Y. (2014). MHD equilibria and triggers for eruption. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 295–320). New York: Springer.

    Google Scholar 

  • Fontenla, J. M., Avrett, E. H., & Loeser, R. (1990). Energy balance in the solar transition region. I – Hydrostatic thermal models with ambipolar diffusion. Astrophysical Journal, 355, 700.

    Article  ADS  Google Scholar 

  • Fontenla, J. M., Avrett, E. H., & Loeser, R. (1991). Energy balance in the solar transition region. II – Effects of pressure and energy input on hydrostatic models. Astrophysical Journal, 377, 712.

    Article  ADS  Google Scholar 

  • Fontenla, J. M., Avrett, E. H., & Loeser, R. (1993). Energy balance in the solar transition region. III – Helium emission in hydrostatic, constant-abundance models with diffusion. Astrophysical Journal, 406, 319.

    Article  ADS  Google Scholar 

  • Fontenla, J. M., Rovira, M., Vial, J.-C., & Gouttebroze, P. (1996). Prominence thread models including ambipolar diffusion. Astrophysical Journal, 466, 496.

    Article  ADS  Google Scholar 

  • Fossum, A., & Carlsson, M. (2005). High-frequency acoustic waves are not sufficient to heat the solar chromosphere. Nature, 435, 919.

    Article  ADS  Google Scholar 

  • Fossum, A., & Carlsson, M. (2006). Determination of the acoustic wave flux in the lower solar chromosphere. Astrophysical Journal, 646, 579.

    Article  ADS  Google Scholar 

  • Heasley, J. N., & Mihalas, D. (1976). Structure and spectrum of quiescent prominences – Energy balance and hydrogen spectrum. Astrophysical Journal, 205, 273.

    Article  ADS  Google Scholar 

  • Heinzel, P. (2014). Radiative transfer in solar prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 101–128). New York: Springer.

    Google Scholar 

  • Heinzel, P., & Anzer, U. (2012). Radiative equilibrium in solar prominences reconsidered. Astronomy and Astrophysics, 539, 6.

    Article  Google Scholar 

  • Heinzel, P., Vial, J.-C., & Anzer, U. (2014). On the formation of Mg II h and k lines in solar prominences. Astronomy and Astrophysics, 564, A132.

    Google Scholar 

  • Hildner, E. (1974). The formation of solar quiescent prominences by condensation. Solar Physics, 35, 123.

    Article  ADS  Google Scholar 

  • Kalkofen, W. (2007). Is the solar chromosphere heated by acoustic waves? Astrophysical Journal, 671, 2154.

    Article  ADS  Google Scholar 

  • Kalkofen, W. (2008). Wave heating of the solar chromosphere. Journal of Astrophysics and Astronomy, 29, 163.

    Article  ADS  Google Scholar 

  • Karpen, J. T., Antiochos, S. K., & Klimchuk, J. A. (2006). The origin of high-speed motions and threads in prominences. Astrophysical Journal, 637, 531.

    Article  ADS  Google Scholar 

  • Khodachenko, M. L., Arber, T. D., Rucker, H. O., & Hanslmeier, A. (2004). Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere. Astronomy and Astrophysics, 422, 1073.

    Article  ADS  Google Scholar 

  • Khodachenko, M. L., Rucker, H. O., Oliver, R., Arber, T. D., & Hanslmeier, A. (2006). On the mechanisms of MHD wave damping in the partially ionized solar plasmas. Advances in Space Research, 37, 447.

    Article  ADS  Google Scholar 

  • Kucera, T., Gilbert, H. & Karpen, J. (2014). Mass flows in a prominence spine as observed in EUV. Astrophysical Journal, 790, 68.

    Google Scholar 

  • Labrosse, N. (2014). Derivation of the major properties of prominences using non-LTE modeling. In J.-C. Vial & O. Engvold (Eds.), Solar prominences. New York: Springer.

    Google Scholar 

  • Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunar, S., Schmieder, B., & Kilper, G. (2010). Physics of solar prominences: I—Spectral diagnostics and non-LTE modelling. Space Science Reviews, 151(4), 243–332.

    Article  ADS  Google Scholar 

  • Leake, J. E., DeVore, C. R., Thayer, J. P., Burns, A., Crowley, G., Gilbert, H. R., Huba, J. D., Judge, P., Krall, J., Linton, M. G., Lukin, V. S., Rodrigues, F., & Wang, W. (2014). Ionized plasma and neutral gas coupling in the sun’s chromosphere and earth’s ionosphere/thermosphere. Space Science Reviews (184).

    Google Scholar 

  • Leenaarts, J., Carlsson, M., Hansteen, V., & Rutten, R. J. (2007). Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere. Astronomy and Astrophysics, 473, 625.

    Article  ADS  Google Scholar 

  • Malherbe, J.-M. (1989). The formation of solar prominences. In Dynamics and structures of quiescent solar prominences: Proceedings of the workshop, Palma de Mallorca, Spain, November 1987 (A89-51201 22–92) (pp. 115–141). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Mariska, J. T. (1992). Model equations: The solar transition region. In R. F. Carswell, D. N. C. Lin & J. E. Pringle (Eds.), (p. 201). New York: Cambridge University Press.

    Google Scholar 

  • Mariska, J. T., Doschek, G. A., & Feldman, U. (1979). Extreme-ultraviolet limb spectra of a prominence observed from SKYLAB. Astrophysical Journal, 232, 929.

    Article  ADS  Google Scholar 

  • Noyes, R. W., Dupree, A. K., Huber, M. C. E., Parkinson, W. H., Reeves, E. M., & Withbroe, G. L. (1972). Extreme-ultraviolet emission from solar prominences. Astrophysical Journal, 178, 515.

    Google Scholar 

  • Oliver, R. (2009). Prominence seismology using small amplitude oscillations. Space Science Reviews, 149, 175.

    Article  ADS  Google Scholar 

  • Oster, L., & Sofia, S. (1966). Thermal dissipation and its application to flare phenomena. Astrophysical Journal, 143, 944.

    Article  ADS  Google Scholar 

  • Parenti, S. (2014). Spectral diagnostics of cool and PCTR optically thin plasma. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 61–76). New York: Springer.

    Google Scholar 

  • Parenti, S., & Vial, J.-C. (2007). Prominence and quiet-Sun plasma parameters derived from FUV spectral emission. Astronomy and Astrophysics, 469, 1109.

    Article  ADS  Google Scholar 

  • Parker, E. N. (1988). Nanoflares and the solar X-ray corona. Astrophysical Journal, 330, 474.

    Article  ADS  Google Scholar 

  • Poland, A., & Anzer, U. (1971). Energy balance in cool quiescent prominences. Solar Physics, 19(2), 401.

    Article  ADS  Google Scholar 

  • Poland, A. I., & Mariska, J. T. (1986). A siphon mechanism for supplying prominence mass. Solar Physics, 104, 303.

    Article  ADS  Google Scholar 

  • Rabin, D. (1986). The prominence–corona interface and its relationship to the chromosphere–corona transition. In NASA Goddard Space Flight Center Coronal and Prominence Plasmas (pp. 135–142) (SEE N87-20871 13-92).

    Google Scholar 

  • Rabin, D., & Moore, R. (1984). Heating the sun’s lower transition region with fine-scale electric currents. Astrophysical Journal, 285, 359.

    Article  ADS  Google Scholar 

  • Raymond, J. C., Cox, D. P., & Smith, B. W. (1976). Radiative cooling of a low-density plasma. Astrophysical Journal, 204, 290.

    Google Scholar 

  • Rosner, R., & Tucker, W. H. (1989). On magnetic fields, heating and thermal conduction in halos, and the suppression of cooling flows. Astrophysical Journal, 338, 761.

    Article  ADS  Google Scholar 

  • Schmahl, E. J. (1979). The prominence–corona interface – A review. In Physics of Solar Prominences: Proceedings of the Colloquium, Oslo, Norway (pp. 102–120), August 14–18, 1978 (A79-46076 20–92). Oslo: Universitetet i Oslo.

    Google Scholar 

  • Soler, R. (2010). Damping of magnetohydrodynamic waves in solar prominence fine structures. PhD thesis, Universitat de les Illes Balears.

    Google Scholar 

  • Soler, R., Ballester, J. L., & Goossens, M. (2011). The thermal instability of solar prominence threads. Astrophysical Journal, 731, 39.

    Article  ADS  Google Scholar 

  • Soler, R., Ballester, J. L., & Parenti, S. (2012). Stability of thermal modes in cool prominence plasmas. Astronomy and Astrophysics, 540, 176–181.

    Article  Google Scholar 

  • Spitzer, L. (1962). Physics of fully ionized gases (2nd ed.). New York: Interscience.

    Google Scholar 

  • Tomczyk, S., McIntosh, S. W., Keil, S. L., Judge, P. G., Schad, T., Seeley, D. H., & Edmondson, J. (2007). Alfvén waves in the solar corona. Science, 317, 1192.

    Article  ADS  Google Scholar 

  • Ulmschneider, P. (1970). Thermal conductivity in stellar atmospheres I. Without magnetic field. Astronomy and Astrophysics, 4, 144.

    ADS  Google Scholar 

  • Ulmschneider, P. (1974). Radiation loss and mechanical heating in the solar chromosphere. Solar Physics, 39, 327.

    Article  ADS  Google Scholar 

  • Ulmschneider, P. (1990). Recent advances in acoustic heating. In Basic plasma processes on the sun (A92-30901 12–92) (pp. 231–234). Dordrecht, Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Vernazza, J. E., Avrett, E. H., & Loeser, R. (1981). Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet Sun. Astrophysical Journal, 45, 635.

    Article  ADS  Google Scholar 

  • Vial, J. C. (1990). The prominence–corona interface. In V. Ruždjak & E. Tandberg-Hanssen (Eds.), Dynamics of Quiescent Prominences, Proceedings of the No. 117 Colloquium of the International Astronomical Union Hvar, SR Croatia, Yugoslavia 1989 (Vol. 363, pp 106–119).

    Google Scholar 

  • Withbroe, G. L., & Noyes, R. W. (1977). Mass and energy flow in the solar chromosphere and corona. Annual Review of Astronomy and Astrophysics, 15, 363.

    Article  ADS  Google Scholar 

  • Yang, C. Y., Nicholls, R. W., & Morgan, F. J. (1975). Studies of the prominence–corona transition zone from rocket ultraviolet spectra of the March 1970 eclipse. Solar Physics, 45, 351.

    Article  ADS  Google Scholar 

  • Zaqarashvili, T. V., Khodachenko, M. L., & Soler, R. (2013). Torsional Alfvén waves in partially ionized solar plasma: Effects of neutral helium and stratification. Astronomy and Astrophysics, 549, 9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gilbert, H. (2015). Energy Balance. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_7

Download citation

Publish with us

Policies and ethics