Skip to main content

Derivation of the Major Properties of Prominences Using NLTE Modelling

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

I introduce techniques to derive the major properties of prominences based on NLTE modelling. The main results of one- and two-dimensional models of the prominences and their fine-structures are presented. Modelling the radiative transfer processes out of local thermodynamic equilibrium allows one to retrieve the prominence plasma parameters (temperature, density, pressure, ionisation degree) as well as the prominence’s mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NLTE stands for Non-LTE, i.e. departures from LTE (Local Thermodynamic Equilibrium).

  2. 2.

    In this chapter, I refer to the Lyman hydrogen spectrum (lines and continua) simply as the Lyman spectrum, unless otherwise stated.

  3. 3.

    This is assuming that a unique solution can be identified. For the modelling to be considered successful when a unique solution cannot be identified from the comparison with observations, there needs to be a small set of models with close enough physical parameters which match the observations.

  4. 4.

    The ionisation ratio is defined as the population of an ion divided by the total population of the element (i.e. summed over all ionisation stages).

  5. 5.

    This method works only if the medium is not too optically thick in the observed line (otherwise the incident radiation component of the model is not visible).

References

  • Anzer, U., & Heinzel, P. (1999). The energy balance in solar prominences. Astronomy and Astrophysics, 349, 974–984.

    ADS  Google Scholar 

  • Auer, L., Bendicho, P. F., & Trujillo Bueno, J. (1994). Multidimensional radiative transfer with multilevel atoms. 1: ALI method with preconditioning of the rate equations. Astronomy and Astrophysics, 292, 599–615.

    Google Scholar 

  • Ballester, J. L. (2014). Magnetism and dynamics of prominences: MHD waves. In J.-C. Vial, & O. Engvold (Eds.), Solar Prominences, ASSL (Vol. 415, pp. 257–296). Springer.

    Google Scholar 

  • Bommier, V., Landi Degl’Innocenti, E., Leroy, J.L., & Sahal-Brechot, S. (1994). Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D3 and H-alpha lines. Solar Physics, 154, 231–260. doi:10.1007/BF00681098.

    Article  ADS  Google Scholar 

  • Engvold, O. (2014). Description and classification of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 31–60). Springer.

    Google Scholar 

  • Engvold, O., Hirayama, T., Leroy, J. L., Priest, E.R., & Tandberg-Hanssen, E.(1990). Hvar reference atmosphere of quiescent prominences. In: V. Ruzdjak, & E. Tandberg-Hanssen (Eds.), IAU Colloq. 117: Dynamics of quiescent prominences. Lecture notes in physics (Vol. 363, pp. 294–+). Berlin: Springer. doi:10.1007/BFb0025640.

    Google Scholar 

  • Fontenla, J. M., Rovira, M., Vial, J. C., & Gouttebroze, P. (1996). Prominence thread models including ambipolar diffusion. Astrophysical Journal, 466, 496–+. doi:10.1086/177527.

    Google Scholar 

  • Gouttebroze, P. (2006). Radiative transfer in cylindrical threads with incident radiation. III. Hydrogen spectrum. Astronomy and Astrophysics, 448, 367–374. doi:10.1051/0004-6361:20054139.

    Google Scholar 

  • Gouttebroze, P. (2008). Radiative transfer in cylindrical threads with incident radiation. V. 2D transfer with 3D velocity fields. Astronomy and Astrophysics, 487, 805–813. doi:10.1051/0004-6361:20079272.

    Google Scholar 

  • Gouttebroze, P., & Heinzel, P. (2002). Calcium to hydrogen line ratios in solar prominences. Astronomy and Astrophysics, 385, 273–280. doi:10.1051/0004-6361:20020142.

    Article  ADS  Google Scholar 

  • Gouttebroze, P., & Labrosse, N. (2000). A ready-made code for the computation of prominence NLTE models. Solar Physics, 196, 349–355.

    Article  ADS  Google Scholar 

  • Gouttebroze, P., & Labrosse, N. (2009). Radiative transfer in cylindrical threads with incident radiation. VI. A hydrogen plus helium system. Astronomy and Astrophysics, 503, 663–671. doi:10.1051/0004-6361/200811483, 0905.3466.

    Google Scholar 

  • Gouttebroze, P., Heinzel, P., & Vial, J. C. (1993). The hydrogen spectrum of model prominences. Astronomy and Astrophysics Supplement Series, 99, 513–543.

    ADS  Google Scholar 

  • Gouttebroze, P., Labrosse, N., Heinzel, P., & Vial, J. C. (2002). Prediction of line intensity ratios in solar prominences. In H. Sawaya-Lacoste (Ed.), SOLMAG 2002. Proceedings of the magnetic coupling of the solar atmosphere Euroconference (Vol. 505, pp. 421–424). Santorini: ESA Special Publication.

    Google Scholar 

  • Gunár, S., Heinzel, P., Schmieder, B., Schwartz, P., & Anzer, U. (2007). Properties of prominence fine-structure threads derived from SOHO/SUMER hydrogen Lyman lines. Astronomy and Astrophysics, 472, 929–936. doi:10.1051/0004-6361:20077785.

    Article  ADS  Google Scholar 

  • Gunár, S., Heinzel, P., & Anzer, U. (2007a). Prominence fine structures in a magnetic equilibrium. III. Lyman continuum in 2D configurations. Astronomy and Astrophysics, 463, 737–743. doi:10.1051/0004-6361:20066142.

    Google Scholar 

  • Gunár, S., Heinzel, P., Anzer, U., & Schmieder, B. (2008). On Lyman-line asymmetries in quiescent prominences. Astronomy and Astrophysics, 490, 307–313. doi:10.1051/0004-6361:200810127.

    Article  ADS  Google Scholar 

  • Gunár, S., Parenti, S., Anzer, U., Heinzel, P., & Vial, J. C. (2011). Synthetic differential emission measure curves of prominence fine structures. II. The SoHO/SUMER prominence of 8 June 2004. Astronomy and Astrophysics, 535, A122. doi:10.1051/0004-6361/201117429.

    Google Scholar 

  • Gunár, S., Mein, P., Schmieder, B., Heinzel, P., & Mein, N. (2012). Dynamics of quiescent prominence fine structures analyzed by 2D non-LTE modelling of the Hα line. Astronomy and Astrophysics 543, A93. doi:10.1051/0004-6361/201218940.

    Article  ADS  Google Scholar 

  • Heasley, J. N., & Milkey, R. W. (1978). Structure and spectrum of quiescent prominences. III - Application of theoretical models in helium abundance determinations. Astrophysical Journal, 221, 677–688. doi:10.1086/156072.

    Google Scholar 

  • Heasley, J. N., & Milkey, R. W. (1983) Structure and spectrum of quiescent prominences. IV - The ultraviolet ionization continua of hydrogen and helium. Astrophysical Journal, 268, 398–402. doi:10.1086/160965.

    Google Scholar 

  • Heinzel, P. (2014). Radiative transfer in solar prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 101–128). Springer.

    Google Scholar 

  • Heinzel, P., & Anzer, U. (2001). Prominence fine structures in a magnetic equilibrium: Two-dimensional models with multilevel radiative transfer. Astronomy and Astrophysics 375, 1082–1090. doi:10.1051/0004-6361:20010926.

    Article  ADS  Google Scholar 

  • Heinzel, P., Gouttebroze, P., & Vial, J. C. (1994). Theoretical correlations between prominence plasma parameters and the emitted radiation. Astronomy and Astrophysics, 292, 656–668.

    ADS  Google Scholar 

  • Heinzel, P., Bommier, V., & Vial, J. C. (1996). A Complex Diagnostic of Solar Prominences. Solar Physics, 164, 211–222. doi:10.1007/BF00146635.

    Article  ADS  Google Scholar 

  • Heinzel, P., Schmieder, B., Vial, J. C., & Kotrč, P. (2001a). SOHO/SUMER observations and analysis of the hydrogen Lyman spectrum in solar prominences. Astronomy and Astrophysics, 370, 281–297. doi:10.1051/0004-6361:20010265.

    Article  ADS  Google Scholar 

  • Heinzel, P., Anzer, U., & Gunár, S. (2005). Prominence fine structures in a magnetic equilibrium. II. A grid of two-dimensional models. Astronomy and Astrophysics, 442, 331–343. doi:10.1051/0004-6361:20053360.

    Google Scholar 

  • Heinzel, P., Schmieder, B., Fárník, F., Schwartz, P., Labrosse, N., Kotrč, P., et al. (2008). Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence. Astrophysical Journal, 686, 1383–1396. doi:10.1086/591018.

    Article  ADS  Google Scholar 

  • Heinzel, P., Vial, J. C., & Anzer, U. (2014a). On the formation of Mg ii h and k lines in solar prominences. Astronomy and Astrophysics, 564, A132. doi:10.1051/0004-6361/201322886.

    Article  ADS  Google Scholar 

  • Heinzel, P., Zapiór, M., Oliver, R., & Ballester, J. L. (2014b). Synthetic hydrogen spectra of prominence oscillations. Astronomy and Astrophysics, 562, A103. doi:10.1051/0004-6361/201322346, 1401.2131.

    Google Scholar 

  • Hyder, C. L., & Lites, B. W. (1970). Hα doppler brightening and Lyman-α doppler dimming in moving Hα prominences. Solar Physics, 14, 147–156. doi:10.1007/BF00240170.

    ADS  Google Scholar 

  • Jejčič, S., Heinzel, P., Zapiór, M., Druckmüller, M., Gunár, S., & Kotrč, P. (2014). Multi-wavelength eclipse observations of a quiescent prominence. Solar Physics 289, 2487–2501. doi:10.1007/s11207-014-0482-1.

    Article  ADS  Google Scholar 

  • Karpen, J. (2014). Plasma structure and dynamics. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 235–255). Springer.

    Google Scholar 

  • Kucera, T. (2014). Derivations and observations of prominence bulk motions and mass. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 77–99). Springer.

    Google Scholar 

  • Labrosse, N. (2014). Plasma properties in eruptive prominences. In: IAU Symposium (Vol. 300, pp. 79–84). doi:10.1017/S1743921313010776.

    Google Scholar 

  • Labrosse, N., & Gouttebroze, P. (2001). Formation of helium spectrum in solar quiescent prominences. Astronomy and Astrophysics, 380, 323–340. doi:10.1051/0004-6361:20011395.

    Article  ADS  Google Scholar 

  • Labrosse, N., & Gouttebroze, P. (2004). Non-LTE radiative transfer in model prominences. I. Integrated intensities of He I triplet lines. Astrophysical Journal, 617, 614–622. doi:10.1086/425168.

    Google Scholar 

  • Labrosse, N., & McGlinchey, K. (2012). Plasma diagnostic in eruptive prominences from SDO/AIA observations at 304 Å. Astronomy and Astrophysics, 537, A100. doi:10.1051/0004-6361/201117801, 1111.4847.

    Google Scholar 

  • Labrosse, N., Gouttebroze, P., Heinzel, P., & Vial, J. C. (2002). Line profiles and intensity ratios in prominence models with a prominence to corona interface. In: J. Kuijpers (Ed.), Solar variability: From core to outer frontiers (Vol. 506, pp. 451–454). Prague: ESA Special Publication.

    Google Scholar 

  • Labrosse, N., Vial, J. C., & Gouttebroze, P. (2006). Plasma diagnostic of a solar prominence from hydrogen and helium resonance lines. In: D. Barret, F. Casoli, G. Lagache, A. Lecavelier, L. Pagani (Eds.) SF2A-2006: Semaine de l’Astrophysique Francaise ( pp 549+).

    Google Scholar 

  • Labrosse, N., Gouttebroze, P., & Vial, J. C. (2007). Effect of motions in prominences on the helium resonance lines in the extreme ultraviolet. Astronomy and Astrophysics, 463, 1171–1179. doi:10.1051/0004-6361:20065775, arXiv:astro-ph/0608221.

    Google Scholar 

  • Labrosse, N., Vial, J. C., & Gouttebroze, P. (2008). Diagnostics of active and eruptive prominences through hydrogen and helium lines modelling. Annales Geophysicae, 26, 2961–2965, 0804.4625.

    Google Scholar 

  • Labrosse, N., Heinzel, P., Vial, J., Kucera, T., Parenti, S., Gunár, S., et al. (2010). Physics of solar prominences: I–Spectral diagnostics and non-LTE modelling. Space Science Reviews, 151, 243–332. doi:10.1007/s11214-010-9630-6, 1001.1620.

    Google Scholar 

  • Labrosse, N., Schmieder, B., Heinzel, P., & Watanabe, T. (2011). EUV lines observed with EIS/Hinode in a solar prominence. Astronomy and Astrophysics, 531, A69. doi:10.1051/0004-6361/201015064, 1105.1400.

    Google Scholar 

  • Léger, L., & Paletou, F. (2009), 2D non-LTE radiative modelling of He I spectral lines formed in solar prominences. Astronomy and Astrophysics, 498, 869–875. doi:10.1051/0004-6361/200810296, 0811.4753.

    Google Scholar 

  • Mihalas, D., Auer, L. H., & Mihalas, B. R. (1978). Two-dimensional radiative transfer. I - Planar geometry. Astrophysical Journal, 220, 1001–1023. doi:10.1086/155988.

    Google Scholar 

  • Morozhenko, N. N. (1984). On the excitation of lower levels of singlet helium in quiescent prominences. Solar Physics 92, 153–160. doi:10.1007/BF00157242.

    Article  ADS  Google Scholar 

  • Ofman, L., Kucera, T. A., Mouradian, Z., & Poland, A. I. (1998). SUMER Observations of the Evolution and the Disappearance of a Solar Prominence. Solar Physics, 183, 97–106.

    Article  ADS  Google Scholar 

  • Paletou, F. (1995). Two-dimensional multilevel radiative transfer with standard partial frequency redistribution in isolated solar atmospheric structures. Astronomy and Astrophysics, 302, 587+

    Google Scholar 

  • Paletou, F., Vial, J. C., & Auer, L. H. (1993). Two-dimensional radiative transfer with partial frequency redistribution. II. Application to resonance lines in quiescent prominences. Astronomy and Astrophysics, 274, 571+

    Google Scholar 

  • Parenti, S. (2014). Spectral diagnostics of cool prominence and PCTR optically thin plasmas. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol.415, pp. 61–76). Springer.

    Google Scholar 

  • Parenti, S., Lemaire, P., & Vial, J. C. (2005a). Solar hydrogen-Lyman continuum observations with SOHO/SUMER. Astronomy and Astrophysics, 443, 685–689. doi:10.1051/0004-6361:20053431.

    Article  ADS  Google Scholar 

  • Schmieder, B., Heinzel, P., Vial, J. C., & Rudawy, P. (1999). SOHO/SUMER observations and analysis of hydrogen Lyman lines in a quiescent prominence. Solar Physics, 189, 109–127.

    Article  ADS  Google Scholar 

  • Schmieder, B., Gunár, S., Heinzel, P., & Anzer, U. (2007). Spectral diagnostics of the magnetic field orientation in a prominence observed with SOHO/SUMER. Solar Physics, 241, 53–66. doi:10.1007/s11207-007-0251-5.

    Article  ADS  Google Scholar 

  • Schmieder, B., Malherbe, J. M., & Wu, S. T. (Eds.) (2014). Nature of prominences and their role in space weather. In IAU Symposium (Vol. 300).

    Google Scholar 

  • Tziotziou, K., Heinzel, P., Mein, P., & Mein, N. (2001). Non-LTE inversion of chromospheric {∖Ca Ii} cloud-like features. Astronomy and Astrophysics, 366, 686–698. doi:10.1051/0004-6361:20000257.

    Article  ADS  Google Scholar 

  • Vial, J. C. (1982). Two-dimensional nonlocal thermodynamic equilibrium transfer computations of resonance lines in quiescent prominences. Astrophysical Journal, 254, 780–795. doi:10.1086/159789.

    Article  ADS  Google Scholar 

  • Vial, J. C. (1982a). Optically thick lines in a quiescent prominence - Profiles of Lyman-alpha, Lyman-beta /H I/, K and H /Mg II/, and K and H /Ca II/ lines with the OSO 8 LPSP instrument. Astrophysical Journal, 253, 330–352. doi:10.1086/159639.

    Article  ADS  Google Scholar 

  • Vial, J.-C. (2014). Historical background and introduction. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 1–29). Springer.

    Google Scholar 

  • Vial, J. C., Ebadi, H., & Ajabshirizadeh, A. (2007). The Ly α and Ly β profiles in solar prominences and prominence fine structure. Solar Physics, 246, 327–338. doi:10.1007/s11207-007-9080-9, 0710.1433.

    Google Scholar 

  • Ballester, J. L. (2014). Prominence seismology. In IAU Symposium (Vol. 300, pp. 30–39). doi:10.1017/S1743921313010703.

    Google Scholar 

  • Parenti, S. (2014). Solar prominences: Observations. Living Reviews in Solar Physics, 11, 1. doi:10.12942/lrsp-2014-1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Labrosse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Labrosse, N. (2015). Derivation of the Major Properties of Prominences Using NLTE Modelling. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_6

Download citation

Publish with us

Policies and ethics