Skip to main content

The Dynamics of Eruptive Prominences

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

This chapter discusses the dynamical properties of eruptive prominences in relation to coronal mass ejections (CMEs). The fact that eruptive prominences are a part of CMEs is emphasized in terms of their physical association and kinematics. The continued propagation of prominence material into the heliosphere is illustrated using in-situ observations. The solar-cycle variation of eruptive prominence locations is discussed with a particular emphasis on the rush-to-the-pole (RTTP) phenomenon. One of the consequences of the RTTP phenomenon is polar CMEs, which are shown to be similar to the low-latitude CMEs. This similarity is important because it provides important clues to the mechanism by which CMEs erupt. The nonradial motion of CMEs is discussed, including the deflection by coronal holes that have important space weather consequences. Finally, the implications of the presented observations for CME modeling are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altrock, R. C. (2014). Forecasting the maxima of solar cycle 24 with coronal Fe xiv emission. Solar Physics, 289, 623–629.

    ADS  Google Scholar 

  • Ananthakrishnan, R. (1952). Prominence activity and the sunspot cycle. Nature, 170, 156–158.

    ADS  Google Scholar 

  • Antiochos, S. K., Devore, C. R., & Klimchuk, J. A. (1999). A model for solar coronal mass ejections. The Astrophysical Journal, 510, 485–493.

    ADS  Google Scholar 

  • Aulanier G (2014) The physical mechanisms that initiate and drive solar eruptions. In B. Schmieder, J.-M. Malherbe, & S. T. Wu (Eds.), Nature of Prominences and their role in Space Weather. Proceedings of the International Astronomical Union, IAU Symposium (Vol 300, pp. 184–196).

    Google Scholar 

  • Bein, B. M., Berkebile-Stoiser, S., Veronig, A. M., et al. (2011). Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. The Astrophysical Journal, 738, 191–204.

    ADS  Google Scholar 

  • Burlaga, L., Fitzenreiter, R., Lepping, R., Ogilvie, K., Szabo, A., Lazarus, A., et al. (1998). A magnetic cloud containing prominence material – January 1997. Journal of Geophysical Research, 10, 277.

    ADS  Google Scholar 

  • Chen, P. F., & Shibata, K. (2000). An emerging flux trigger mechanism for coronal mass ejections. The Astrophysical Journal, 545, 524–531.

    ADS  Google Scholar 

  • Chen, J., Howard, R. A., Brueckner, G. E., Santoro, R., Krall, J., Paswaters, S. E., Cyr, O. C., Schwenn, R., Lamy, P., & Simnett, G. M. (1997). Evidence of an erupting magnetic flux rope: LASCO coronal mass ejection of 1997 April 13. The Astrophysical Journal, 490, L191.

    ADS  Google Scholar 

  • Chifor, C., Tripathi, D., Mason, H. E., & Dennis, B. R. (2007). X-ray precursors to flares and filament eruptions. Astronomy and Astrophysics, 472, 967–979.

    ADS  Google Scholar 

  • Cremades, H., Bothmer, V., & Tripathi, D. (2006). Properties of structured coronal mass ejections in solar cycle 23. Advances in Space Research, 38, 461–465.

    ADS  Google Scholar 

  • Cyr, O. C., & Webb, D. F. (1991). Activity associated with coronal mass ejections at solar minimum – SMM observations from 1984–1986. Solar Physics, 136, 379–394.

    ADS  Google Scholar 

  • Dmitriev, A. V., Suvorova, A. V., Chao, J.-K., Wang, C. B., Rastaetter, L., Panasyuk, M. I., Lazutin, L. L., Kovtyukh, A. S., Veselovsky, I. S., & Myagkova, I. N. (2014). Anomalous dynamics of the extremely compressed magnetosphere during 21 January 2005 magnetic storm. Journal of Geophysical Research, 119, 877–896.

    Google Scholar 

  • Engvold, O. (1980). Energy and mass injected by flares and eruptive prominences. Solar and interplanetary dynamics (pp. 173–187). Dordrecht: D. Reidel Publishing Co.

    Google Scholar 

  • Engvold, O. (1989). Prominence environment. Dynamics and structure of quiescent solar prominences (pp. 47–76). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Fan, Y.-H. (2014). Magnetism and dynamics of prominences: MHD equilibria and triggers for eruption. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 295--320). Springer.

    Google Scholar 

  • Feynman, J., & Martin, S. F. (1995). The initiation of coronal mass ejections by newly emerging magnetic flux. Journal of Geophysical Research, 100, 3355–3367.

    ADS  Google Scholar 

  • Filippov, B. P., Gopalswamy, N., & Lozhechkin, A. V. (2001). Non-radial motion of eruptive filaments. Solar Physics, 203, 119–130.

    ADS  Google Scholar 

  • Fujimori, K. (1984). Latitude distribution of solar prominences in the years 1975–1981. Publications of the Astronomical Society of Japan, 36, 189–190.

    ADS  Google Scholar 

  • Gibson, S. E. (2014). Coronal cavities: Observations and implications for the magnetic environment of prominences. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 321–351). Springer.

    Google Scholar 

  • Gibson, S. E., Kucera, T. A., Rastawicki, D., et al. (2010). Three-dimensional morphology of a coronal prominence cavity. The Astrophysical Journal, 724, 1133–1146.

    ADS  Google Scholar 

  • Gilbert, H. R., Holzer, T. E., Burkepile, J. T., & Hundhausen, A. J. (2000). Active and eruptive prominences and their relationship to coronal mass ejections. The Astrophysical Journal, 537, 503–515.

    ADS  Google Scholar 

  • Gilbert, J. A., Lepri, S. T., Landi, E., & Zurbuchen, T. H. (2012). First measurements of the complete heavy-ion charge state distributions of C, O, and Fe associated with interplanetary coronal mass ejections. The Astrophysical Journal, 751, 20–27.

    ADS  Google Scholar 

  • Gopalswamy, N. (1999). X-ray and microwave signatures of coronal mass ejections. In T. Bastian, N. Gopalswamy, & K. Shibasaki (Eds.), Solar physics with radio observations, NRO report no. 479 (pp. 141–152).

    Google Scholar 

  • Gopalswamy, N. (2004). A global picture of CMEs in the inner heliosphere. In G. Poletto & S. T. Suess (Eds.), The sun and the heliosphere as an integrated system: Astrophysics and space science library (Vol. 317, p. 201). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Gopalswamy, N. (2006a). Radio observations of solar eruptions. Solar physics with the Nobeyama Radioheliograph (pp. 81–94). Nobeyama: Nobeyama Solar Radio Observatory.

    Google Scholar 

  • Gopalswamy, N. (2006b). Properties of interplanetary coronal mass ejections. Space Science Reviews, 124, 145–168.

    ADS  Google Scholar 

  • Gopalswamy, N. (2013). Observations of CMEs and models of the eruptive corona. In SOLAR WIND 13: Proceedings of the thirteenth international solar wind conference. AIP conference proceedings (Vol. 1539, pp. 5–10).

    Google Scholar 

  • Gopalswamy, N., & Kundu, M. R. (1989). A slowly moving plasmoid associated with a filament eruption. Solar Physics, 122, 91–110.

    ADS  Google Scholar 

  • Gopalswamy, N., & Thompson, B. J. (2000). Early life of coronal mass ejections. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1457–1469.

    ADS  Google Scholar 

  • Gopalswamy, N., & Yashiro, S. (2013). Obscuration of flare emission by an eruptive prominence. Publications of the Astronomical Society of Japan, 65, S11.

    ADS  Google Scholar 

  • Gopalswamy, N., Hanaoka, Y., Kosugi, T., Lepping, R. P., Steinberg, J. T., Plunkett, S., Howard, R. A., Thompson, B. J., Gurman, J., Ho, G., Nitta, N., & Hudson, H. S. (1998). On the relationship between coronal mass ejections and magnetic clouds. Geophysical Research Letters, 25, 2485.

    ADS  Google Scholar 

  • Gopalswamy, N., Shibasaki, K., Thompson, B. J., Gurman, J., & DeForest, C. (1999). Microwave enhancement and variability in the elephant’s trunk coronal hole: Comparison with SOHO observations. Journal of Geophysical Research, 104, 9767–9780.

    ADS  Google Scholar 

  • Gopalswamy, N., Hanaoka, Y., & Hudson, H. S. (2000). Structure and dynamics of the corona surrounding an eruptive prominence. Advances in Space Research, 25, 1851–1854.

    ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., & Howard, R. A. (2003a). Coronal mass ejections and solar polarity reversal. The Astrophysical Journal, 598, L63–L66.

    ADS  Google Scholar 

  • Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., & Howard, R. A. (2003b). Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. The Astrophysical Journal, 586, 562–578.

    ADS  Google Scholar 

  • Gopalswamy, N., Nunes, S., Yashiro, S., & Howard, R. A. (2004a). Variability of solar eruptions during cycle 23. Advances in Space Research, 34, 391–396.

    ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Krucker, S., Stenborg, G., & Howard, R. A. (2004b). Intensity variation of large solar energetic particle events associated with coronal mass ejections. Journal of Geophysical Research, 109, A12105.

    ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Xie, H., Lepping, R. P., & Howard, R. A. (2005). Solar source of the largest geomagnetic storm of cycle 23. Geophysical Research Letters, 32, L12S09.

    Google Scholar 

  • Gopalswamy, N., Mikić, Z., Maia, D., Alexander, D., Cremades, H., Kaufmann, P., Tripathi, D., & Wang, Y.-M. (2006). The pre-CME sun. Space Science Reviews, 123, 303–339.

    ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Michalek, G., & Lepping, R. P. (2008). Solar sources and geospace consequences of interplanetary magnetic clouds observed during solar cycle 23. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 245–253.

    ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., & Yashiro, S. (2009a). CME interactions with coronal holes and their interplanetary consequences. Journal of Geophysical Research, 114, A00A22.

    Google Scholar 

  • Gopalswamy, N., Yashiro, S., Temmer, M., Davila, J., Thompson, W. T., Jones, S., McAteer, R. T. J., Wuelser, J.-P., Freeland, S., & Howard, R. A. (2009b). EUV wave reflection from a coronal hole. The Astrophysical Journal, 691, L123–L127.

    ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., & Howard, R. (2009c). The SOHO/LASCO CME catalog. Earth, Moon, and Planets, 104, 295–313.

    ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., & Mäkelä, P. (2010a). Coronal mass ejections from sunspot and non-sunspot regions. In S. S. Hasan & R. J. Rutten (Eds.), Magnetic coupling between the interior and atmosphere of the sun (Astrophysics and Space Science Proceedings, pp. 289–307). Berlin: Springer.

    Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., & Yashiro, S. (2010b). Solar sources of “driverless” interplanetary shocks. In Twelfth International Solar Wind Conference. AIP Conference Proceedings (Vol. 1216, pp. 452–458).

    Google Scholar 

  • Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Mäkelä, P., & Usoskin, I. G. (2012a). Properties of ground level enhancement events and the associated solar eruptions during solar cycle 23. Space Science Reviews, 171, 23–60.

    ADS  Google Scholar 

  • Gopalswamy, N., Yashiro, S., Mäkelä, P., Michalek, G., Shibasaki, K., & Hathaway, D. H. (2012b). Behavior of solar cycles 23 and 24 revealed by microwave observations. The Astrophysical Journal, 750, L42–L47.

    ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Akiyama, S., Xie, H., Yashiro, S., & Reinard, A. A. (2013). The solar connection of enhanced heavy ion charge states in the interplanetary medium: Implications for the flux-rope structure of CMEs. Solar Physics, 284, 17–46.

    ADS  Google Scholar 

  • Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., & Michalek, G. (2014). Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophysical Research Letters, 41, 2673–2680.

    ADS  Google Scholar 

  • Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. I., & Ross, C. L. (1976). The speeds of coronal mass ejection events. Solar Physics, 48, 389–397.

    ADS  Google Scholar 

  • Gruesbeck, J. R., Lepri, S. T., & Zurbuchen, T. H. (2012). Two-plasma model for low charge state interplanetary coronal mass ejection observations. The Astrophysical Journal, 760, 141.

    ADS  Google Scholar 

  • Gui, B., Shen, C., Wang, Y., Ye, P., Liu, J., Wang, S., & Zhao, X. P. (2011). Quantitative analysis of CME deflections in the corona. Solar Physics, 271, 111–139.

    ADS  Google Scholar 

  • Guo, Y., Ding, M. D., Schmieder, B., Li, H., Török, T., & Wiegelmann, T. (2010). Driving mechanism and onset condition of a confined eruption. The Astrophysical Journal, 725, L38–L42.

    ADS  Google Scholar 

  • Hanaoka, Y., & Shinkawa, T. (1999). Heating of erupting prominences observed at 17 GHz. The Astrophysical Journal, 510, 466–473.

    ADS  Google Scholar 

  • Hansen, R. T., Garcia, C. J., Hansen, S. F., & Loomis, H. G. (1969). Brightness variations of the white light corona during the years 1964 67. Solar Physics, 7, 417–433.

    ADS  Google Scholar 

  • Hildner, E. (1977). Mass ejections from the corona into the interplanetary space. In M. A. Shea, D. F. Smart, & S. T. Wu (Eds.), Study of traveling interplanetary phenomena (pp. 3–21). Hingham, MA: Reidel.

    Google Scholar 

  • Hildner, E., Gosling, J. T., Hansen, R. T., & Bohlin, J. D. (1975). The sources of material comprising a mass ejection coronal transient. Solar Physics, 45, 363–376.

    ADS  Google Scholar 

  • Hori, K., & Culhane, J. L. (2002). Trajectories of microwave prominence eruptions. Astronomy and Astrophysics, 382, 666–677.

    ADS  Google Scholar 

  • Howard, R. A., & Labonte, B. A. (1981). Surface magnetic fields during the solar activity cycle. Solar Physics, 74, 131–145.

    ADS  Google Scholar 

  • Hudson, H. S., Kosugi, T., Nitta, N., & Shimojo, M. (2001). Hard X-radiation from a fast coronal ejection. The Astrophysical Journal, 561, L211–L214.

    ADS  Google Scholar 

  • Hundhausen, A. J. (1993). Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984–1989. Journal of Geophysical Research, 98, 13177–13200.

    ADS  Google Scholar 

  • Hyder, C. L. (1965). The “polar crown” of filaments and the sun’s polar magnetic fields. The Astrophysical Journal, 141, 271–273.

    Google Scholar 

  • Ji, H., Wang, H., Schmahl, E. J., Moon, Y.-J., & Jiang, Y. (2003). Observations of the failed eruption of a filament. The Astrophysical Journal, 595, L135–L138.

    ADS  Google Scholar 

  • Joshi, A. D., & Srivastava, N. (2011). Kinematics of two eruptive prominences observed by EUVI/STEREO. The Astrophysical Journal, 730, 104–114.

    ADS  Google Scholar 

  • Kahler, S. W., Cliver, E. W., Cane, H. V., McGuire, R. E., Stone, R. G., & Sheeley, N. R., Jr. (1986). Solar filament eruptions and energetic particle events. The Astrophysical Journal, 302, 504–510.

    ADS  Google Scholar 

  • Karpen, J. T., Antiochos, S. K., & DeVore, C. R. (2012). The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. The Astrophysical Journal, 760, 81–95.

    ADS  Google Scholar 

  • Kay, C., Opher, M., & Evans, R. M. (2013). Forecasting a coronal mass ejection’s altered trajectory: ForeCAT. The Astrophysical Journal, 775, 5–21.

    ADS  Google Scholar 

  • Kleczek, J. (1964). Occurrence of eruptive prominences. Bulletin of the Astronomical Institutes of Czechoslovakia, 15, 41.

    ADS  Google Scholar 

  • Kosugi, T., Ishiguro, M., & Shibasaki, K. (1986). Polar-cap and coronal-hole-associated brightenings of the sun at millimeter wavelengths. Publications of the Astronomical Society of Japan, 38, 1–11.

    ADS  Google Scholar 

  • Kozyra, J. U., Manchester, W. B., Escoubet, C. P., Lepri, S. T., Liemohn, M. W., Gonzalez, W. D., Thomsen, M. W., & Tsurutani, B. T. (2013). Earth’s collision with a solar filament on 21 January 2005: Overview. Journal of Geophysical Research, 118, 5967–5978.

    Google Scholar 

  • Leighton, R. B. (1969). A magneto-kinematic model of the solar cycle. The Astrophysical Journal, 156, 1–26.

    ADS  Google Scholar 

  • Lepri, S. T., & Zurbuchen, T. H. (2010). Direct observational evidence of filament material within interplanetary coronal mass ejections. The Astrophysical Journal, 723, L22–L27.

    ADS  Google Scholar 

  • Liu, K., Wang, Y., Shen, C., & Wang, S. (2012). Critical height for the destabilization of solar prominences: Statistical results from STEREO observations. The Astrophysical Journal, 744, 168–177.

    ADS  Google Scholar 

  • Lockyer, W. J. S. (1931). On the relationship between solar prominences and the forms of the corona. MNRAS, 91, 797–809.

    ADS  Google Scholar 

  • Long, D. M., Gallagher, P. T., McAteer, R. T. J., & Bloomfield, D. S. (2008). The kinematics of a globally propagating disturbance in the solar corona. The Astrophysical Journal, 680, L81–L84.

    ADS  Google Scholar 

  • Lorenc, M., Pastorek, L., & Rybanský, M. (2003). Magnetic field reversals on the sun and the N-S asymmetry. In A. Wilson (Ed.), Solar variability as an input to the Earth’s environment (pp. 129–132). ESA SP-535. Noordwijk: ESA Publications Division.

    Google Scholar 

  • Low, B. C., & Hundhausen, J. R. (1995). Magnetostatic structures of the solar corona. 2: The magnetic topology of quiescent prominences. The Astrophysical Journal, 443, 818–836.

    ADS  Google Scholar 

  • Lugaz, N. (2014). Eruptive prominences and their impact on the earth: The impacts on our earth and our life. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 431–451). Springer.

    Google Scholar 

  • Mackay, D. H., Gaizauskas, V., Rickard, G. J., & Priest, E. R. (1997). Force-free and potential models of a filament channel in which a filament forms. The Astrophysical Journal, 486, 534–549.

    ADS  Google Scholar 

  • MacQueen, R. M., & Fisher, R. R. (1983). The kinematics of solar inner coronal transients. Solar Physics, 89, 89–102.

    ADS  Google Scholar 

  • MacQueen, R. M., Hundhausen, A. J., & Conover, C. W. (1986). The propagation of coronal mass ejection transients. Journal of Geophysical Research, 91, 31–38.

    ADS  Google Scholar 

  • Mäkelä, P., Gopalswamy, N., Xie, H., Mohamed, A. A., Akiyama, S., & Yashiro, S. (2013). Coronal hole influence on the observed structure of interplanetary CMEs. Solar Physics, 284, 59–75.

    ADS  Google Scholar 

  • Maričić, D., Vršnak, B., & Roša, D. (2009). Relative kinematics of the leading edge and the prominence in coronal mass ejections. Solar Physics, 260, 177–189.

    ADS  Google Scholar 

  • Marqué, C., Lantos, P., Klein, K. L., & Delouis, J. M. (2001). Coronal restructuring and electron acceleration following a filament eruption. Astronomy and Astrophysics, 374, 316–325.

    ADS  Google Scholar 

  • Martin, S. F. (1973). The evolution of prominences and their relationship to active centers (a review). Solar Physics, 31, 3–21.

    ADS  Google Scholar 

  • McAllister, A. H., Dryer, M., McIntosh, P., Singer, H., & Weiss, L. (1996). A large polar crown coronal mass ejection and a “problem” geomagnetic storm: April 14–23. Journal of Geophysical Research, 101, 13497–13516.

    ADS  Google Scholar 

  • McIntosh, P. S. (2003). Patterns and dynamics of solar magnetic fields and HeI coronal holes in cycle 23. In A. Wilson (Ed.), Solar variability as an input to the earth’s environment (pp. 807–818), ESA SP-535. Noordwijk: ESA Publications Division.

    Google Scholar 

  • Moon, Y. J., Choe, G. S., Wang, H., Park, Y. D., Gopalswamy, N., Yang, G., & Yashiro, S. (2002). A statistical study of two classes of coronal mass ejections. The Astrophysical Journal, 581, 694–702.

    ADS  Google Scholar 

  • Moore, R. L., & Sterling, A. C. (2006). Initiation of coronal mass ejections. In N. Gopalswamy, R. Mewaldt, & J. Torsti (Eds.), Solar eruptions and energetic particles (pp. 43–57), Geophysical monograph 165, AGU, Washington, DC.

    Google Scholar 

  • Moore, R. L., & Sterling, A. C. (2007). The coronal-dimming footprint of a streamer-puff coronal mass ejection: Confirmation of the magnetic-arch-blowout scenario. The Astrophysical Journal, 661, 543–550.

    ADS  Google Scholar 

  • Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. (2001). Onset of the magnetic explosion in solar flares and coronal mass ejections. The Astrophysical Journal, 552, 833–848.

    ADS  Google Scholar 

  • Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., & Ross, C. L. (1979). The association of coronal mass ejection transients with other forms of solar activity. Solar Physics, 61, 201–215.

    ADS  Google Scholar 

  • Odstrcil, D., & Pizzo, V. J. (2009). Numerical heliospheric simulations as assisting tool for interpretation of observations by STEREO heliospheric imagers. Solar Physics, 259, 297–309.

    ADS  Google Scholar 

  • Olmedo, O., Vourlidas, A., Zhang, J., & Cheng, X. (2012). Secondary waves and/or the “Reflection” from and “Transmission” through a coronal hole of an extreme ultraviolet wave associated with the 2011 February 15 X2.2 flare observed with SDO/AIA and STEREO/EUVI. The Astrophysical Journal, 756, 143–155.

    ADS  Google Scholar 

  • Panasenco, O., Martin, S. F., Velli, M., & Vourlidas, A. (2013). Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Physics, 287, 391–413.

    ADS  Google Scholar 

  • Parenti, S. (2014). Solar prominences: Observations. Living Reviews in Solar Physics, 11, 1–88.

    ADS  Google Scholar 

  • Plunkett, S. P., Thompson, B. J., Cyr, O. C., & Howard, R. A. (2001). Solar source regions of coronal mass ejections and their geomagnetic effects. Journal of Atmospheric and Solar-Terrestrial Physics, 63, 389–402.

    ADS  Google Scholar 

  • Qiu, J., Hu, Q., Howard, T. A., & Yurchyshyn, V. B. (2007). On the magnetic flux budget in low-corona magnetic reconnection and interplanetary coronal mass ejections. The Astrophysical Journal, 659, 758–772.

    ADS  Google Scholar 

  • Régnier, S., Walsh, R. W., & Alexander, C. E. (2011). A new look at a polar crown cavity as observed by SDO/AIA structure and dynamics. Astronomy and Astrophysics, 533, L1–L4.

    ADS  Google Scholar 

  • Reinard, A. A. (2008). Analysis of interplanetary coronal mass ejection parameters as a function of energetics, source location, and magnetic structure. The Astrophysical Journal, 682, 1289.

    ADS  Google Scholar 

  • Richardson, J. D., Liu, Y., Wang, C., & Burlaga, L. F. (2006). ICMES at very large distances. Advances in Space Research, 38, 528–534.

    ADS  Google Scholar 

  • Riley, P., Schatzman, C., Cane, H. V., Richardson, I. G., & Gopalswamy, N. (2006). On the rates of coronal mass ejections: Remote solar and in situ observations. The Astrophysical Journal, 647, 648–653.

    ADS  Google Scholar 

  • Robinson, R. D. (1978). Observations and interpretation of moving type IV solar radio bursts. Solar Physics, 60, 383–398.

    ADS  Google Scholar 

  • Saito, K., & Tandberg-Hanssen, E. (1973). The arch systems, cavities, and prominences in the helmet streamer observed at the solar eclipse, November 12, 1966. Solar Physics, 31, 105–121.

    ADS  Google Scholar 

  • Schmahl, E., & Hildner, E. (1977). Coronal mass-ejections-kinematics of the 19 December 1973 event. Solar Physics, 55, 473–490.

    ADS  Google Scholar 

  • Schmieder, B., Démoulin, P., & Aulanier, G. (2013). Solar filament eruptions and their physical role in triggering coronal mass ejections. Advances in Space Research, 51, 1967–1980.

    ADS  Google Scholar 

  • Schrijver, C. J., Elmore, C., Kliem, B., Török, T., & Title, A. M. (2008). Observations and modeling of the early acceleration phase of erupting filaments involved in coronal mass ejections. The Astrophysical Journal, 674, 586–595.

    ADS  Google Scholar 

  • Sharma, R., & Srivastava, N. (2012). Presence of solar filament plasma detected in interplanetary coronal mass ejections by in situ spacecraft. Journal of Space Weather and Space Climate, 2, A10.

    ADS  Google Scholar 

  • Sharma, R., Srivastava, N., Chakrabarty, D., Möstl, C., & Hu, Q. (2013). Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments. Journal of Geophysical Research, 118, 3954–3967.

    Google Scholar 

  • Sheeley, N. R., Jr., Howard, R. A., Koomen, M. J., Michels, D. J., & Poland, A. I. (1980). The observation of a high-latitude coronal transient. The Astrophysical Journal, 238, L161–L164.

    ADS  Google Scholar 

  • Sheeley, N. R., Jr., Wang, Y.-M., & Hawley, S. H. (1997). Measurements of flow speeds in the corona between 2 and 30 Ro. The Astrophysical Journal, 484, 472–478.

    ADS  Google Scholar 

  • Sheeley, N. R., Walters, J. H., Wang, Y.-M., & Howard, R. A. (1999). Continuous tracking of coronal outflows: Two kinds of coronal mass ejections. Journal of Geophysical Research, 104, 24739–24768.

    ADS  Google Scholar 

  • Shibasaki, K. (2013). Long-term global solar activity observed by the Nobeyama Radioheliograph. Publications of the Astronomical Society of Japan, 65, S17–S22.

    ADS  Google Scholar 

  • Shimojo, M. (2013). Unusual migration of prominence activities in the southern hemisphere during cycles 23–24. Publications of the Astronomical Society of Japan, 65, S16.

    ADS  Google Scholar 

  • Shimojo, M., Yokoyama, T., Asai, A., Nakajima, H., & Shibasaki, K. (2006). One solar-cycle observations of prominence activities using the Nobeyama Radioheliograph 1992–2004. Publications of the Astronomical Society of Japan, 58, 85–92.

    ADS  Google Scholar 

  • Simnett, G. M. (2000). The relationship between prominence eruptions and coronal mass ejections. Journal of Atmospheric and Solar-Terrestrial Physics, 62, 1479–1487.

    ADS  Google Scholar 

  • Song, H. Q., Chen, Y., Ye, D. D., Han, G. Q., Du, G. H., Li, G., Zhang, J., & Hu, Q. (2013). A study of fast flareless coronal mass ejections. The Astrophysical Journal, 773, 129–138.

    ADS  Google Scholar 

  • Sterling, A. C., & Moore, R. L. (2003). Tether-cutting energetics of a solar quiet-region prominence eruption. The Astrophysical Journal, 599, 1418–1425.

    ADS  Google Scholar 

  • Sterling, A. C., Moore, R. L., & Freeland, S. L. (2011a). Insights into filament eruption onset from solar dynamics observatory observations. The Astrophysical Journal, 731, L3.

    ADS  Google Scholar 

  • Sterling, A. C., Moore, R. L., & Harra, L. K. (2011b). Lateral offset of the coronal mass ejections from the X-flare of 2006 December 13 and its two precursor eruptions. The Astrophysical Journal, 743, 63–73.

    ADS  Google Scholar 

  • Stewart, R. T., Dulk, G. A., Sheridan, K. V., House, L. L., Wagner, W. J., Illing, R., & Sawyer, C. (1982). Visible light observations of a dense plasmoid associated with a moving type IV solar radio burst. Astronomy and Astrophysics, 116, 217–223.

    ADS  Google Scholar 

  • Svalgaard, L., & Kamide, Y. (2013). Asymmetric solar polar field reversals. The Astrophysical Journal, 763, 23–28.

    ADS  Google Scholar 

  • Tandberg-Hanssen, E., Martin, S. F., & Hansen, R. T. (1980). Dynamics of flare sprays. Solar Physics, 65, 357–368.

    ADS  Google Scholar 

  • Vemareddy, P., Maurya, R. A., & Ambastha, A. (2012). Filament eruption in NOAA 11093 leading to a two-ribbon M1.0 class flare and CME. Solar Physics, 277, 337–354.

    ADS  Google Scholar 

  • Vršnak, B., Maričić, D., Stanger, A. L., Veronig, A. M., Temmer, M., & Roša, D. (2007). Solar Physics, 241, 85.

    ADS  Google Scholar 

  • Waldmeier, M. (1960). Zirkulation und Magnetfeld der solaren Polarzone. Mit 7 Textabbildungen. Zeitschrift für Astrophysik, 49, 176–185.

    ADS  Google Scholar 

  • Wang, Y.-M., & Sheeley, N. R., Jr. (1999). Filament eruptions near emerging bipoles. The Astrophysical Journal, 510, L157–L160.

    ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N. R., Jr., & Andrews, M. D. (2002). Polarity reversal of the solar magnetic field during cycle 23. Journal of Geophysical Research, 107, SH10–SH11.

    Google Scholar 

  • Webb, D. F. (2014). Eruptive prominences and their association with coronal mass ejections. In J.-C. Vial, & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 409–430). Springer.

    Google Scholar 

  • Webb, D. F., & Howard, R. A. (1994). The solar cycle variation of coronal mass ejections and the solar wind mass flux. Journal of Geophysical Research, 99, 4201–4220.

    ADS  Google Scholar 

  • Webb, D. F., & Hundhausen, A. J. (1987). Activity associated with the solar origin of coronal mass ejections. Solar Physics, 108, 383–401.

    ADS  Google Scholar 

  • Webb, D. F., & Jackson, B. V. (1981). Kinematical analysis of flare spray ejecta observed in the corona. Solar Physics, 73, 341–361.

    ADS  Google Scholar 

  • Webb, D. F., Davis, J. M., & McIntosh, P. S. (1984). Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field. Solar Physics, 92, 109–132.

    ADS  Google Scholar 

  • Wood, B. E., Karovska, M., Chen, J., Brueckner, G. E., Cook, J. W., & Howard, R. A. (1999). Comparison of two coronal mass ejections observed by EIT and LASCO with a model of an erupting magnetic flux rope. The Astrophysical Journal, 512, 484–495.

    ADS  Google Scholar 

  • Wood, B. E., Wu, C. C., Rouillard, A. P., Howard, R. A., & Socker, D. G. (2012). A coronal hole’s effects on coronal mass ejection shock morphology in the inner heliosphere. The Astrophysical Journal, 755, 43–52.

    ADS  Google Scholar 

  • Xie, H., Gopalswamy, N., & Cyr, O. C. (2013). Near-sun flux-rope structure of CMEs. Solar Physics, 284, 47–58.

    ADS  Google Scholar 

  • Zhang, J., & Dere, K. P. (2006). A statistical study of main and residual accelerations of coronal mass ejections. The Astrophysical Journal, 649, 1100–1109.

    ADS  Google Scholar 

  • Zhang, J., Dere, K. P., Howard, R. A., Kundu, M. R., & White, S. M. (2001). On the temporal relationship between coronal mass ejections and flares. The Astrophysical Journal, 559, 452–462.

    ADS  Google Scholar 

  • Zhukov, A. N., Saez, F., Lamy, P., Llebaria, A., & Stenborg, G. (2008). The origin of polar streamers in the solar corona. The Astrophysical Journal, 680, 1532–1541.

    ADS  Google Scholar 

Download references

Acknowledgments

I thank the editors, Oddbjørn Engvold and Jean-Claude Vial, for inviting this contribution. I thank David Webb, Pertti Mäkelä, Sarah Gibson, Ronald Moore, and Alphonse Sterling for helpful comments. I also thank S. Yashiro, S. Akiyama, and P. Mäkelä for their help with the figures. Work supported by NASA’s LWS TR&T program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nat Gopalswamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gopalswamy, N. (2015). The Dynamics of Eruptive Prominences. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_15

Download citation

Publish with us

Policies and ethics