Skip to main content

Coronal Cavities: Observations and Implications for the Magnetic Environment of Prominences

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

Dark and elliptical, coronal cavities yield important clues to the magnetic structures that cradle prominences, and to the forces that ultimately lead to their eruption. We review observational analyses of cavity morphology, thermal properties (density and temperature), line-of-sight and plane-of-sky flows, substructure including hot cores and central voids, linear polarization signatures, and observational precursors and predictors of eruption. We discuss a magnetohydrodynamic interpretation of these observations which argues that the cavity is a magnetic flux rope, and pose a set of open questions for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aulanier, G., Démoulin, P., & Grappin, R. (2005). Equilibrium and observational properties of line-tied twisted flux tubes. Astronomy and Astrophysics, 430, 1067.

    Article  ADS  MATH  Google Scholar 

  • Ballester, J. L. (2014). Magnetism and dynamics of prominences: MHD waves. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 257–294). New York: Springer.

    Google Scholar 

  • Ba̧k-Stȩślicka, U., Gibson, S. E., Fan, Y., Bethge, C., Forland, B., & Rachmeler, L. A. (2013). Twisted magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry. Astrophysical Journal, 770, 28. Arxiv 13047388.

    Google Scholar 

  • Ba̧k-Stȩślicka, U., Gibson, S. E., Fan, Y., Bethge, C., Forland, B., & Rachmeler, L. A. (2014). The spatial relation between EUV cavities and linear polarization signatures. In B. Schmieder, J.-M. Malherbe & S. T. Wu (Eds.), IAU Symposium (Vol. 300, pp. 395–396). DOI 10.1017/ S1743921313011253

    Google Scholar 

  • Berger, M. A. (1984). Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophysical and Astrophysical Fluid Dynamics, 30, 79–104. DOI 10.1080/03091928408210078.

    Article  ADS  Google Scholar 

  • Berger, T. (2012). Quiescent prominence dynamics: An update on Hinode/SOT discoveries. In T. Sekii, T. Watanabe & T. Sakurai (Eds.) Hinode-3: The 3rd Hinode science meeting. Astronomical Society of the Pacific conference series (Vol. 454, p. 79).

    Google Scholar 

  • Berger, T., Testa, P., Hillier, A., Boerner, P., Low, B. C., Shibata, K., et al. (2011). Magneto-thermal convection in solar prominences. Nature, 472, 197–200. DOI 10.1038/nature09925.

    Article  ADS  Google Scholar 

  • Berger, T. E., Shine, R. A., Slater, G. L., Tarbell, T. D., Title, A. M., Okamoto, T. J., et al. (2008). Hinode SOT observations of solar quiescent prominence dynamics. Astrophysical Journal Letters, 676, L89–L92. DOI 10.1086/587171.

    Article  ADS  Google Scholar 

  • Berger, T. E., Slater, G., Hurlburt, N., Shine, R., Tarbell, T., Title, A., et al. (2010). Quiescent prominence dynamics observed with the Hinode solar optical telescope. I. Turbulent upflow plumes. Astrophysical Journal, 716, 1288–1307. DOI 10.1088/0004-637X/716/2/1288.

    Google Scholar 

  • Berger, T. E., Liu, W., & Low, B. C. (2012). SDO/AIA detection of solar prominence formation within a coronal cavity. Astrophysical Journal Letters, 758, L37. DOI 10.1088/2041-8205/758/2/L37, 1208.3431.

    Google Scholar 

  • Casini, R., & Judge, P. G. (1999). Spectral lines for polarization measurements of the coronal magnetic field. II. Consistent treatment of the Stokes vector for magnetic-dipole transitions. Astrophysical Journal, 522, 524. DOI 10.1086/307629.

    Google Scholar 

  • de Toma, G., Casini, R., Burkepile, J. T., & Low, B. C. (2008). Rise of a dark bubble through a quiescent prominence. Astrophysical Journal Letters, 687, L123–L126. DOI 10.1086/593326.

    Article  ADS  Google Scholar 

  • De Pontieu, B., McIntosh, S. W., Carlsson, M., Hansteen, V. H., Tarbell, T. D., Boerner, P., et al. (2011). The origins of hot plasma in the solar corona. Science, 331, 55. DOI 10.1126/science.1197738.

    Article  ADS  Google Scholar 

  • DeForest, C. E., Howard, T. A., & McComas, D. J. (2013). Tracking coronal features from the low corona to earth: A quantitative analysis of the 2008-Dec-12 CME. Astrophysical Journal, 769, 43. DOI 10.1088/ 0004-637X/769/1/43

    Article  ADS  Google Scholar 

  • Démoulin, P., Priest, E. R., & Lonie, D. P. (1996). Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. Journal of Geophysical Research, 101, 7631.

    Google Scholar 

  • Dere, K. P., Brueckner, G. E., Howard, R. A., Michels, D. J., & Delaboudiniere, J. P. (1999). LASCO and EIT observations of helical structure in coronal mass ejections. Astrophysical Journal, 492, 804.

    Google Scholar 

  • Dove, J., Gibson, S., Rachmeler, L. A., Tomczyk, S., & Judge, P. (2011). A ring of polarized light: Evidence for twisted coronal magnetism in cavities. Astrophysical Journal, 731, 1.

    Article  ADS  Google Scholar 

  • Dudík, J., Aulanier, G., Schmieder, B., Zapiór, M., & Heinzel, P. (2012). Magnetic topology of bubbles in quiescent prominences. Astrophysical Journal, 761, 9. DOI 10.1088/0004-637X/761/1/9.

    Article  ADS  Google Scholar 

  • Engvold, O. (1989). In E. R. Priest (Ed.), Dynamics and structures of quiescent prominences (p. 47). Dordrecht: D. Reidel Publishing Company.

    Google Scholar 

  • Engvold, O. (2014). Description and classification of prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 31–60). New York: Springer.

    Google Scholar 

  • Fan, Y. (2012). Thermal signatures of tether-cutting reconnections in pre-eruption coronal flux ropes: Hot central voids in coronal cavities. Astrophysical Journal, 758, 60. DOI 10.1088/0004-637X/758/1/ 60, 1205.1028.

    Google Scholar 

  • Fan, Y. (2014). Magnetism and dynamics of prominences: MHD equilibria and triggers for eruption. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 295–320). New York: Springer.

    Google Scholar 

  • Filippov, B. P., & Den, O. G. (2001). A critical height of quiescent prominences before eruption. Journal of Geophysical Research, 106, 25,177–25,184. DOI 10.1029/2000JA004002.

    Article  Google Scholar 

  • Forland, B. C., Gibson, S. E., Dove, J. B., Rachmeler, L. A., & Fan, Y. (2013). Coronal cavity survey: Morphological clues to eruptive magnetic topologies. Solar Physics, 288, 603–615. DOI 10.1007/s11207-013-0361-1

    Article  ADS  Google Scholar 

  • Fuller, J., & Gibson, S. E. (2009). A survey of coronal cavity density profiles. Astrophysical Journal, 700, 1205.

    Article  ADS  Google Scholar 

  • Fuller, J., Gibson, S. E., de Toma, G., & Fan, Y. (2008). Observing the unobservable? Modeling coronal cavity density. Astrophysical Journal, 678, 515.

    Article  ADS  Google Scholar 

  • Gibson, S. E. (2014). Magnetism and the invisible man: The mysteries of coronal cavities. In B. Schmieder, J.-M. Malherbe, & S. T. Wu (Eds.), IAU Symposium (Vol. 300, pp. 139–146). DOI 10.1017/S1743921313010879

    Google Scholar 

  • Gibson, S. E., & Fan, Y. (2006a). Coronal prominence structure and dynamics: A magnetic flux rope interpretation. Journal of Geophysical Research, 111. DOI 10.1029/2006JA011871.

    Google Scholar 

  • Gibson, S. E., & Fan, Y. (2006b). The partial expulsion of a magnetic flux rope. Astrophysical Journal Letters, 637, 65.

    Article  ADS  Google Scholar 

  • Gibson, S. E., & Low, B. C. (1998). A time-dependent three-dimensional magnetohydrodynamic model of the coronal mass ejection. Astrophysical Journal, 493, 460.

    Article  ADS  Google Scholar 

  • Gibson, S. E., Fletcher, L., Del Zanna, G., Pike, C. D., Mason, H. E., Mandrini, C. H., et al. (2002). The structure and evolution of a sigmoidal active region. Astrophysical Journal, 574, 265.

    Article  Google Scholar 

  • Gibson, S. E., Foster, D., Burkepile, J., de Toma, G., & Stanger, A. (2006) The calm before the storm: The link between quiescent cavities and cmes. Astrophysical Journal, 641, 590.

    Article  ADS  Google Scholar 

  • Gibson, S. E., Kucera, T. A., Rastawicki, D., Dove, J., de Toma, G., Hao, J., et al. (2010). Three-dimensional morphology of a coronal prominence cavity. Astrophysical Journal, 723, 1133.

    Article  ADS  Google Scholar 

  • Gopalswamy, N. (2014). Eruptive prominences and their impact on the earth: The dynamic phenomenon. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 379–408). New York: Springer.

    Google Scholar 

  • Guhathakurta, M., Rottman, G. J., Fisher, R. R., Orrall, F. Q., & Altrock, R. C. (1992). Coronal density and temperature structure from coordinated observations associated with the total solar eclipse of 1988 March 18. Astrophysical Journal, 388, 633.

    Article  ADS  Google Scholar 

  • Habbal, S. R., Druckmueller, M., Morgan, H., Scholl, I., Rusin, V., Daw, A., et al. (2010). Total solar eclipse observations of hot prominence shrouds. Astrophysical Journal, 719, 1362.

    Article  ADS  Google Scholar 

  • Hudson, H. S., & Schwenn, R. (2000). Hot cores in coronal filament cavities. Advances in Space Research, 25, 1859.

    Article  ADS  Google Scholar 

  • Hudson, H. S., Acton, L. W., Harvey, K. A., & McKenzie, D. M. (1999). A stable filament cavity with a hot core. Astrophysical Journal, 513, 83.

    Article  ADS  Google Scholar 

  • van de Hulst, H. C. (1950). The electron density of the solar corona. Bulletin of the Astronomical Institutes of the Netherlands, 11, 135.

    ADS  Google Scholar 

  • Illing, R. M., & Hundhausen, A. J. (1986). Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection. Journal of Geophysical Research, 91, 10,951.

    Article  Google Scholar 

  • Janse, A. M., Low, B. C., & Parker, E. N. (2010). Topological complexity and tangential discontinuity in magnetic fields. Physics of Plasmas, 17(9), 092,901. DOI 10.1063/1.3474943.

    Article  Google Scholar 

  • Judge, P. G., Low, B. C., & Casini, R. (2006). Spectral lines for polarization measurements of the coronal magnetic field. iv. Stokes signals in current-carrying fields. Astrophysical Journal, 651, 1229.

    Google Scholar 

  • Karpen, J. (2014). Plasma structure and dynamics. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 235–255). New York: Springer.

    Google Scholar 

  • Klimchuk, J. A., Karpen, J. T., & Antiochos, S. K. (2010). Can thermal nonequilibrium explain coronal loops? Astrophysical Journal, 714, 1239–1248. DOI 10.1088/0004-637X/714/2/1239, 0912.0953.

    Google Scholar 

  • Krall, J., & Chen, J. (2005). Density structure of a preeruption coronal flux rope. Astrophysical Journal, 628, 1046–1055. DOI 10.1086/430810.

    Article  ADS  Google Scholar 

  • Kucera, T. (2014). Derivations and observations of prominence bulk motions and mass. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 77–99). New York: Springer.

    Google Scholar 

  • Kucera, T. A., Gibson, S. E., Schmit, D. J., Landi, E., & Tripathi, D. (2012). Temperature and EUV intensity in a coronal prominence cavity. Astrophysical Journal, 757, 73.

    Article  ADS  Google Scholar 

  • Kundu, M. R., Fuerst, E., Hirth, W., & Butz, M. (1978). Multifrequency observations of solar filaments at centimeter wavelengths. Astronomy and Astrophysics, 62, 431.

    ADS  Google Scholar 

  • Li, X., Morgan, H., Leonard, D., & Jeska, L. (2012). A solar tornado observed by AIA/SDO: Rotational flow and evolution of magnetic helicity in a prominence and cavity. Astrophysical Journal Letters, 752, L22. DOI 10.1088/2041-8205/752/2/L22.

    Article  ADS  Google Scholar 

  • Liu, R., Alexander, D., & Gilbert, H. R. (2007). Kink-induced catastrophe in a coronal eruption. Astrophysical Journal, 661, 1260.

    Article  ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2012). First SDO/AIA observation of solar prominence formation following an eruption: Magnetic dips and sustained condensation and drainage. Astrophysical Journal, 745, L21. DOI 10.1088/2041-8205/745/2/L21, 1201.0811.

    Google Scholar 

  • Liu, Y., & Schuck, P. W. (2012). Magnetic energy and helicity in two emerging active regions in the sun. Astrophysical Journal, 761, 105. DOI 10.1088/0004-637X/761/2/105.

    Article  ADS  Google Scholar 

  • Lopez-Ariste, A. (2014). Magnetometry of prominences. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 177–202). New York: Springer.

    Google Scholar 

  • Low, B. C. (1994). Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections, and magnetic helicity. Physics of Plasmas, 1, 1684–1690. DOI 10.1063/1.870671.

    Article  ADS  Google Scholar 

  • Low, B. C., & Hundhausen, J. R. (1995). Magnetostatic structures of the solar corona. ii. The magnetic topology of quiescent prominences. Astrophysical Journal, 443, 818.

    Google Scholar 

  • Low, B. C., Munro, R. H., & Fisher, R. R. (1982). The initiation of a coronal transient. Astrophysical Journal, 254, 335–342. DOI 10.1086/159737.

    Article  ADS  Google Scholar 

  • Low, B. C., Berger, T., Casini, R., & Liu, W. (2012a). The hydromagnetic interior of a solar quiescent prominence. I. Coupling between force balance and steady energy transport. Astrophysical Journal, 755, 34. DOI 10.1088/ 0004-637X/755/1/34, 1203.1056.

    Google Scholar 

  • Low, B. C., Liu, W., Berger, T., & Casini, R. (2012b). The hydromagnetic interior of a solar quiescent prominence. II. Magnetic discontinuities and cross-field mass transport. Astrophysical Journal, 757, 21. DOI 10.1088/ 0004-637X/757/1/21.

    Google Scholar 

  • Lugaz, N. (2014). Eruptive prominences and their impact on the Earth and our life. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 431–451). New York: Springer.

    Google Scholar 

  • Luna. M., Karpen, J. T., & DeVore, C. R. (2012). Formation and evolution of a multi-threaded solar prominence. Astrophysical Journal, 746, 30. DOI 10.1088/0004-637X/746/1/30, 1201.3559.

    Google Scholar 

  • Mackay, D. (2014). Formation and large-scale patterns of filament channels and filaments. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 353–378). New York: Springer.

    Google Scholar 

  • Maričić, D., Vršnak, B., & Rosa, D. (2009). Relative kinematics of the leading edge and the prominence in coronal mass ejections. Solar Physics, 260, 177.

    Article  ADS  Google Scholar 

  • Marqué, C. (2004). Radiometric observations of quiescent filament cavities. Astrophysical Journal, 602, 1037.

    Article  ADS  Google Scholar 

  • Martin, S. (2014). The magnetic field structure of prominences from direct and indirect observations. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 203–233). New York: Springer.

    Google Scholar 

  • McCabe, M. K., & Mickey, D. L. (1981). The He I 10,830 a chromosphere and filament associated structures. Solar Physics, 73, 59–66. DOI 10.1007/ BF00153144.

    Article  ADS  Google Scholar 

  • McIntosh, P. S., Krieger, A. S., Nolte, J. T., & Vaiana, G. (1976). Association of X-ray arches with chromospheric neutral lines. Solar Physics, 49, 57–77. DOI 10.1007/BF00221485.

    Article  ADS  Google Scholar 

  • Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A.I., & Ross, C.L. (1979). The association of coronal mass ejection transients with other forms of solar activity. Solar Phys, 61, 201–215. DOI 10.1007/ BF00155456.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S. F., & Velli, M. (2014). Apparent solar tornado-like prominences. Solar Phys, 289, 603–622. DOI 10.1007/s11207-013-0337-1, 1307.2303.

    Google Scholar 

  • Parker, E. N. (1994). Spontaneous current sheets in magnetic fields: with applications to stellar x-rays. International Series in Astronomy and Astrophysics (Vol. 1). New York: Oxford University Press.

    Google Scholar 

  • Rachmeler, L. A., Gibson, S. E., Dove, J. B., DeVore, C. R., & Fan, Y. (in press). Polarimetric properties of flux ropes and sheared arcades in coronal prominence cavities. Solar Physics. Arxiv 13047594.

    Google Scholar 

  • Reeves, K. K., Gibson, S. E., Kucera, T. A., & Hudson, H. S. (2012). Thermal properties of coronal cavities observed with the X-ray telescope on Hinode. Astrophysical Journal, 746, 146.

    Article  ADS  Google Scholar 

  • Régnier, S., Walsh, R. W., & Alexander, C. E. (2011). A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics. Astronomy and Astrophysics, 533, L1. DOI 10.1051/0004-6361/ 201117381, 1107.3451.

    Google Scholar 

  • Saito, K., & Hyder, C. (1968). A concentric ellipse multiple-arch system in the solar corona. Solar Physics, 5, 61.

    Article  ADS  Google Scholar 

  • Saito, K., & Tandberg-Hanssen, E. (1973). The arch systems, cavities, and prominences in the helmet streamer observed at the solar eclipse, november 12, 1966. Solar Physics, 31, 105.

    Article  ADS  Google Scholar 

  • Schmahl, E. J. (1979). The prominence-corona interface—a review. In E. Jensen, P. Maltby & F. Q. Orrall (Eds.), IAU Colloq. 44: Physics of solar prominences (pp. 102–120). Oslo: Universitetet i Oslo.

    Google Scholar 

  • Schmit, D. J., & Gibson, S. (2013). Diagnosing the prominence-cavity connection. Astrophysical Journal, 770, 35. DOI 10.1088/0004-637X/770/ 1/35, 1304.7595.

    Google Scholar 

  • Schmit, D. J., & Gibson, S. E. (2011). Forward modeling cavity density: A multi-instrument diagnostic. Astrophysical Journal, 733, 1.

    Article  ADS  Google Scholar 

  • Schmit, D. J., & Gibson, S. E. (2014). The formation of a cavity in a 3d flux rope. IAU S300 proceedings. In B. Schmieder, J.-M. Malherbe & S. T. Wu (Eds.), IAU Symposium (Vol. 300, pp. 147–150). DOI 10.1017/ S1743921313010880

    Google Scholar 

  • Schmit, D. J., Gibson, S. E., Tomczyk, S., Reeves, K. K., Sterling, A. C., Brooks, D. H., et al. (2009). Large-scale flows in prominence cavities. Astrophysical Journal Letters, 700, 96.

    Article  ADS  Google Scholar 

  • Schmit, D. J., Gibson, S., Luna, M., Karpen, J., & Innes, D. (2013). Prominence mass supply and the cavity. Astrophysical Journal, 779,156. DOI 10.1088/0004-637X/779/2/156, 1311.2382.

    Google Scholar 

  • Serio, S., Vaiana, G. S., Godoli, G., Motta, S., Pirronello, V., & Zappala, R. A. (1978). Configuration and gradual dynamics of prominence-related X-ray coronal cavities. Solar Physics, 59, 65–86. DOI 10.1007/BF00154932.

    Article  ADS  Google Scholar 

  • Straka, R. M., Papagiannis, M. D., & Kogut, J. A. (1975). Study of a filament with a circularly polarized beam at 3.8 cm. Solar Physics, 45, 131.

    Google Scholar 

  • Tandberg-Hanssen, E. (1974). Solar prominences. Dordrecht: D. Reidel Publishing Company.

    Book  Google Scholar 

  • Tandberg-Hanssen, E. (1995). The nature of solar prominences. Dordrecht: Kluwer Academic Press.

    Book  Google Scholar 

  • Taylor, J. B. (1974). Relaxation of toroidal plasma and generation of reverse magnetic fields. Physical Review Letters, 33, 19.

    Article  Google Scholar 

  • Tian, H., Tomczyk, S., McIntosh, S. W., Bethge, C., de Toma, G., & Gibson, S. (2013). Observations of coronal mass ejections with the coronal multichannel polarimeter. Solar Physics, 288, 637–650. DOI 10.1007/ s11207-013-0317-5, 1303.4647.

    Google Scholar 

  • Titov, V. S. (2007). Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. Astrophysical Journal, 660, 863.

    Article  ADS  Google Scholar 

  • Titov, V. S., & Demoulin, P. (1999). Basic topology of twisted magnetic configurations in solar flares. Astronomy and Astrophysics, 351, 707.

    ADS  Google Scholar 

  • Török, T., Panasenco, O., Titov, V. S., Mikić, Z., Reeves, K. K., Velli, M., et al. (2011). A model for magnetically coupled sympathetic eruptions. Astrophysical Journal Letters, 739, L63. DOI 10.1088/2041-8205/739/2/ L63, 1108.2069.

    Google Scholar 

  • Vaiana, G. S., Krieger, A. S., & Timothy, A. F. (1973). Identification and analysis of structures in the corona from X-Ray photography. Solar Physics, 32, 81–116. DOI 10.1007/BF00152731.

    Article  ADS  Google Scholar 

  • Vasquez, A. M., Frazin, R. A., & Karmalabadi, F. (2009). 3D temperatures and densities of the solar corona via multi-spacecraft EUV tomography: Analysis of prominence cavities. Solar Physics, 256, 73.

    Article  ADS  Google Scholar 

  • Waldmeier, M. (1970). The structure of the monochromatic corona in the surroundings of prominences. Solar Physics, 15, 167–175. DOI 10.1007/ BF00149483.

    Article  ADS  Google Scholar 

  • Wang, Y. M., & Stenborg, G. (2010). Spinning motions in coronal cavities. Astrophysical Journal Letters, 719, 181.

    Article  ADS  Google Scholar 

  • Webb, D. (2014). Eruptive prominences and their impact on the earth; the association with coronal mass ejections. In J.-C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 409–430). New York: Springer.

    Google Scholar 

  • Woltjer, L. (1958). A theorem on force-free magnetic fields. Proceedings of the National Academy of Science, 44, 489–491. DOI 10.1073/pnas.44.6.489.

    Google Scholar 

  • Zhang, M., & Low, B. C. (2005). The hydromagnetic nature of solar coronal mass ejections. Annual Review of Astronomy and Astrophysics, 43, 103.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The National Center for Atmospheric Research is sponsored by the National Science Foundation. AIA data courtesy of NASA/SDO and the AIA, EVE, and HMI science teams. H α image courtesy of Big Bear Solar Observatory/New Jersey institute of Technology. Hinode is a Japanese mission developed and launched by ISAS/JAXA, with NAOJ as domestic partner and NASA and STFC (UK) as international partners. It is operated by these agencies in co-operation with ESA and NSC (Norway). Much of the work presented here directly relates to, or benefited greatly from research undertaken by the International Space Science Institute (ISSI) international teams on coronal cavities (2008–2010) and coronal magnetism (2013–2014). I am indebted to all of the members of both of these teams, particularly Urszula Bak-Steslicka, Terry Kucera, Laurel Rachmeler, Kathy Reeves, and Don Schmit. In addition, I thank Tom Berger, Giuliana de Toma, Yuhong Fan, Blake Forland, Jim Fuller, Judy Karpen, Jim Klimchuk, Olga Panasenco, Marco Velli, and especially B. C. Low for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Gibson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gibson, S. (2015). Coronal Cavities: Observations and Implications for the Magnetic Environment of Prominences. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_13

Download citation

Publish with us

Policies and ethics