Skip to main content

MHD Equilibria and Triggers for Prominence Eruption

  • Chapter
  • First Online:
Solar Prominences

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 415))

Abstract

Magneto-hydrodynamic (MHD) simulations of the emergence of twisted magnetic flux tubes from the solar interior into the corona are discussed to illustrate how twisted and sheared coronal magnetic structures (with free magnetic energy), capable of driving filament eruptions, can form in the corona in emerging active regions. Several basic mechanisms that can disrupt the quasi-equilibrium coronal structures and trigger the release of the stored free magnetic energy are discussed. These include both ideal processes such as the onset of the helical kink instability and the torus instability of a twisted coronal flux rope structure and the non-ideal process of the onset of fast magnetic reconnections in current sheets. Representative MHD simulations of the non-linear evolution involving these mechanisms are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aly, J. J. (1984). On some properties of force-free magnetic fields in infinite regions of space. The Astrophysical Journal, 283, 349–362. doi:10.1086/162313.

    Article  ADS  Google Scholar 

  • Aly, J. J. (1991). How much energy can be stored in a three-dimensional force-free magnetic field? The Astrophysical Journal, 375, L61–L64. doi:10.1086/186088.

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J. F., & Aly, J. J. (2004). Coronal magnetohydrodynamic evolution driven by subphotospheric conditions. The Astrophysical Journal, 615, L165–L168. doi:10.1086/426317.

    Article  ADS  Google Scholar 

  • Amari, T., Luciani, J. F., Aly, J. J., Mikic, Z., & Linker, J. (2003). Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. I. Boundary motion-driven evolution. The Astrophysical Journal, 585, 1073–1086. doi:10.1086/345501.

    Google Scholar 

  • Amari, T., Luciani, J. F., Aly, J. J., Mikic, Z., & Linker, J. (2003). Coronal mass ejection: Initiation, magnetic helicity, and flux ropes. II. Turbulent diffusion-driven evolution. The Astrophysical Journal, 595, 1231–1250. doi:10.1086/377444.

    Google Scholar 

  • Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. (1999). A model for solar coronal mass ejections. The Astrophysical Journal, 510, 485–493. doi:10.1086/306563.

    Article  ADS  Google Scholar 

  • Anzer, U. (1968). The stability of force-free magnetic fields with cylindrical symmetry in the context of solar flares. Solar Physics, 3, 298–315. doi:10.1007/BF00155164.

    Article  ADS  Google Scholar 

  • Archontis, V., & Hood, A. W. (2012). Magnetic flux emergence: a precursor of solar plasma expulsion. Astronomy & Astrophysics, 537, A62. doi:10.1051/0004-6361/201116956.

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A. W., Savcheva, A., Golub, L., & Deluca, E. (2009). On the structure and evolution of complexity in sigmoids: A flux emergence model. The Astrophysical Journal, 691, 1276–1291. doi:10.1088/0004-637X/691/2/1276.

    Article  ADS  Google Scholar 

  • Archontis, V., Hood, A. W., & Tsinganos, K. (2014). Recurrent explosive eruptions and the “sigmoid-to-arcade” transformation in the sun driven by dynamical magnetic flux emergence. The Astrophysical Journal, 786, L21. doi:10.1088/2041-8205/786/2/L21.

    Article  ADS  Google Scholar 

  • Aulanier, G., Pariat, E., & Démoulin, P. (2005) Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes. Astronomy & Astrophysics, 444, 961–976. doi:10.1051/0004-6361:20053600.

    Article  ADS  Google Scholar 

  • Aulanier, G., Török, T., Démoulin, P., & DeLuca, E. E. (2010). Formation of torus-unstable flux ropes and electric currents in erupting sigmoids. The Astrophysical Journal, 708, 314–333. doi:10.1088/0004-637X/708/1/314.

    Article  ADS  Google Scholar 

  • Bateman, B. (1978). MHD Instabilities. Cambridge, MA: MIT.

    Google Scholar 

  • Berger, M. A. (1984). Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophysical and Astrophysical Fluid Dynamics, 30, 79–104. doi:10.1080/03091928408210078.

    Article  ADS  Google Scholar 

  • Berger, M. A., & Field, G. B. (1984). The topological properties of magnetic helicity. Journal of Fluid Mechanics, 147, 133–148. doi:10.1017/S0022112084002019.

    Article  ADS  MathSciNet  Google Scholar 

  • Berger, T., Testa, P., Hillier, A., et al. (2011). Magneto-thermal convection in solar prominences. Nature, 472, 197–200. doi:10.1038/nature09925.

    Article  ADS  Google Scholar 

  • Bhattacharjee, A. (2004). Impulsive magnetic reconnection in the Earth’s magnetotail and the solar corona. Annual Review of Astronomy and Astrophysics, 42, 365–384. doi:10.1146/annurev.astro.42.053102.134039.

    Article  ADS  Google Scholar 

  • Bhattacharjee, A., Huang, Y. M., Yang, H., & Rogers, B. (2009). Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Physics of Plasmas, 16(11), 112 102. doi:10.1063/1.3264103.

    Google Scholar 

  • Brown, D. S., Nightingale, R. W., Alexander, D., et al. (2003). Observations of rotating sunspots from TRACE. Solar Physics, 216, 79–108. doi:10.1023/A:1026138413791.

    Article  ADS  Google Scholar 

  • Canou, A., Amari, T., Bommier, V., Schmieder, B., Aulanier, G., & Li, H. (2009). Evidence for a pre-eruptive twisted flux rope using the themis vector magnetograph. The Astrophysical Journal Letter, 693, L27–L30. doi:10.1088/0004-637X/693/1/L27.

    Article  ADS  Google Scholar 

  • Cassak, P. A., Shay, M. A., & Drake, J. F. (2005). Catastrophe model for fast magnetic reconnection onset. Physical Review Letters, 95(23), 235002. doi:10.1103/PhysRevLett.95.235002.

    Article  ADS  Google Scholar 

  • Chae, J., Wang, H., Qiu, J., Goode, P. R., Strous, L., & Yun, H. S. (2001). The formation of a prominence in active region NOAA 8668. I. SOHO/MDI observations of magnetic field evolution. The Astrophysical Journal, 560, 476–489. doi:10.1086/322491.

    Google Scholar 

  • Chatterjee, P., & Fan, Y. (2013). Simulation of homologous and cannibalistic coronal mass ejections produced by the emergence of a twisted flux rope into the solar corona. The Astrophysical Journal, 778, L8. doi:10.1088/2041-8205/778/1/L8.

    Article  ADS  Google Scholar 

  • de Toma, G., Casini, R., Burkepile, J. T., & Low, B. C. (2008). Rise of a dark bubble through a quiescent prominence. The Astrophysical Journal Letter, 687, L123–L126. doi:10.1086/593326.

    Article  ADS  Google Scholar 

  • Démoulin, P. (2007). Recent theoretical and observational developments in magnetic helicity studies. Advances in Space Research, 39, 1674–1693. doi:10.1016/j.asr.2006.12.037.

    Article  ADS  Google Scholar 

  • Démoulin, P., & Aulanier, G. (2010). Criteria for flux rope eruption: Non-equilibrium versus torus instability. The Astrophysical Journal, 718, 1388–1399. doi:10.1088/0004-637X/718/2/1388.

    Article  ADS  Google Scholar 

  • Démoulin, P., Henoux, J. C., Priest, E. R., & Mandrini, C. H. (1996). Quasi-separatrix layers in solar flares. I. Method. Astronomy & Astrophysics, 308, 643–655.

    Google Scholar 

  • Démoulin, P., Priest, E. R., & Lonie, D. P. (1996). Three-dimensional magnetic reconnection without null points 2. Application to twisted flux tubes. Journal of Geophysical Research (Space Physics), 101, 7631–7646. doi:10.1029/95JA03558.

    Google Scholar 

  • Engvold, O. (2014). Chapter 2: Description of prominences, including classification. In J. C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 31–60). Berlin: Springer.

    Google Scholar 

  • Fan, Y. (2009). The emergence of a twisted flux tube into the solar atmosphere: Sunspot rotations and the formation of a coronal flux rope. The Astrophysical Journal, 697, 1529–1542. doi:10.1088/0004-637X/697/2/1529.

    Article  ADS  Google Scholar 

  • Fan, Y. (2010). On the eruption of coronal flux ropes. The Astrophysical Journal, 719, 728–736. doi:10.1088/0004-637X/719/1/728.

    Article  ADS  Google Scholar 

  • Fan, Y. (2012). Thermal signatures of tether-cutting reconnections in pre-eruption coronal flux ropes: Hot central voids in coronal cavities. The Astrophysical Journal, 758, 60. doi:10.1088/0004-637X/758/1/60.

    Article  ADS  Google Scholar 

  • Fan, Y., & Gibson, S. E. (2004). Numerical simulations of three-dimensional coronal magnetic fields resulting from the emergence of twisted magnetic flux tubes. The Astrophysical Journal, 609, 1123–1133.

    Article  ADS  Google Scholar 

  • Fan, Y., & Gibson, S. E. (2007). Onset of coronal mass ejections due to loss of confinement of coronal flux ropes. The Astrophysical Journal, 668, 1232–1245. doi:10.1086/521335.

    Article  ADS  Google Scholar 

  • Fang, F., Manchester, W., Abbett, W. P., & van der Holst, B. (2010). Simulation of flux emergence from the convection zone to the corona. The Astrophysical Journal, 714, 1649–1657. doi:10.1088/0004-637X/714/2/1649.

    Article  ADS  Google Scholar 

  • Fang, F., Manchester, IV, W., Abbett, W. P., & van der Holst, B. (2012). Buildup of magnetic shear and free energy during flux emergence and cancellation. The Astrophysical Journal, 754, 15. doi:10.1088/0004-637X/754/1/15.

    Article  ADS  Google Scholar 

  • Fang, F., Manchester, IV, W., Abbett, W. P., & van der Holst, B. (2012). Dynamic coupling of convective flows and magnetic field during flux emergence. The Astrophysical Journal, 745, 37. doi:10.1088/0004-637X/745/1/37.

    Article  ADS  Google Scholar 

  • Fong, B., Low, B. C., & Fan, Y. (2002). Quiescent solar prominences and magnetic-energy storage. The Astrophysical Journal, 571, 987–998. doi:10.1086/340070.

    Article  ADS  Google Scholar 

  • Forbes, T. G. (2000). A review on the genesis of coronal mass ejections. Journal of Geophysical Research (Space Physics), 105, 23153–23166. doi:10.1029/2000JA000005.

    Article  ADS  Google Scholar 

  • Forbes, T. G., Linker, J. A., Chen, J., et al. (2006). CME theory and models, in coronal mass ejections, space sciences series of ISSI (Vol. 21, p. 251). Berlin: Springer. ISBN: 978-0-387-45086-5.

    Google Scholar 

  • Forbes, T. G., & Priest, E. R. (1995). Photospheric magnetic field evolution and eruptive flares. The Astrophysical Journal, 446, 377. doi:10.1086/175797.

    Article  ADS  Google Scholar 

  • Gibson, S. E. (2014). Chapter 13: Coronal cavities: observations and implications for the magnetic environment of prominences. In J. C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 321–351). Berlin: Springer.

    Google Scholar 

  • Gibson, S. E., & Fan, Y. (2006). Coronal prominence structure and dynamics: A magnetic flux rope interpretation. Journal of Geophysical Research (Space Physics), 111, A12103. doi:10.1029/2006JA011871.

    Article  ADS  Google Scholar 

  • Gibson, S. E., Fletcher, L., Del Zanna, G., et al. (2002). The structure and evolution of a sigmoidal active region. The Astrophysical Journal, 574, 1021–1038. doi:10.1086/341090.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., & Howard, R. A. (2003). Prominence eruptions and coronal mass ejection: A statistical study using microwave observations. The Astrophysical Journal, 586, 562–578. doi:10.1086/367614.

    Article  ADS  Google Scholar 

  • Hood, A. W., & Priest, E. R. (1981). Critical conditions for magnetic instabilities in force-free coronal loops. Geophysical and Astrophysical Fluid Dynamics, 17, 297–318. doi: 10.1080/03091928108243687.

    Article  ADS  MATH  Google Scholar 

  • Isenberg, P. A., & Forbes, T. G. (2007).A three-dimensional line-tied magnetic field model for solar eruptions. The Astrophysical Journal, 670, 1453–1466. doi:10.1086/522025.

    Google Scholar 

  • Jiang, Y., Zheng, R., Yang, J., Hong, J., Yi, B., & Yang, D. (2012). Rapid sunspot rotation associated with the X2.2 flare on 2011 February 15. The Astrophysical Journal, 744, 50. doi:10.1088/0004-637X/744/1/50.

    Google Scholar 

  • Karpen, J. (2014). Chapter 10: Plasma structure and dynamics. In J. C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 235–255). Berlin: Springer.

    Google Scholar 

  • Karpen, J. T., Antiochos, S. K., & DeVore, C. R. (2012). The mechanisms for the onset and explosive eruption of coronal mass ejections and eruptive flares. The Astrophysical Journal, 760, 81. doi:10.1088/0004-637X/760/1/81.

    Article  ADS  Google Scholar 

  • Kippenhahn, R., & Schlüter, A. (1957). Eine Theorie der solaren Filamente. Mit 7 Textabbildungen. Zeitschrift für Astrophysik 43, 36.

    Google Scholar 

  • Kliem, B., & Török, T. (2006). Torus instability. Physical Review Letters, 96 (25), 255002. doi:10.1103/PhysRevLett.96.255002.

    Article  ADS  Google Scholar 

  • Leake, J. E., Linton, M. G., & Török, T. (2013). Simulations of emerging magnetic flux. I. The formation of stable coronal flux ropes. The Astrophysical Journal, 778, 99. doi:10.1088/0004-637X/778/2/99.

    Google Scholar 

  • Lin, J., Forbes, T. G., Isenberg, P. A., & Démoulin, P. (1998). The effect of curvature on flux-rope models of coronal mass ejections. The Astrophysical Journal, 504, 1006–1019. doi:10.1086/306108.

    Article  ADS  Google Scholar 

  • Lites, B. W. (2005). Magnetic flux ropes in the solar photosphere: The vector magnetic field under active region filaments. The Astrophysical Journal, 622, 1275–1291. doi:10.1086/428080.

    Article  ADS  Google Scholar 

  • Liu, R., & Alexander, D. (2009). Hard X-ray emission in kinking filaments. The Astrophysical Journal, 697, 999–1009. doi:10.1088/0004-637X/697/2/999.

    Article  ADS  Google Scholar 

  • Liu, W., Berger, T. E., & Low, B. C. (2012). First SDO/AIA observation of solar prominence formation following an eruption: Magnetic dips and sustained condensation and drainage. The Astrophysical Journal Letter, 745, L21. doi:10.1088/2041-8205/745/2/L21.

    Article  ADS  Google Scholar 

  • Longcope, D. W., & Welsch, B. T. (2000). A model for the emergence of a twisted magnetic flux tube. The Astrophysical Journal, 545, 1089–1100. doi:10.1086/317846.

    Article  ADS  Google Scholar 

  • Low, B. C., Fong, B., & Fan, Y. (2003). The mass of a solar quiescent prominence. The Astrophysical Journal, 594, 1060–1067. doi:10.1086/377042.

    Article  ADS  Google Scholar 

  • Low, B. C., & Smith, D. F. (1993). The free energies of partially open coronal magnetic fields. The Astrophysical Journal, 410, 412–425. doi:10.1086/172758.

    Article  ADS  Google Scholar 

  • Low, B. C., & Zhang, M. (2002). The hydromagnetic origin of the two dynamical types of solar coronal mass ejections. The Astrophysical Journal, 564, L53–L56. doi:10.1086/338798.

    Article  ADS  Google Scholar 

  • Lynch, B. J., Antiochos, S. K., DeVore, C. R., Luhmann, J. G., & Zurbuchen, T. H. (2008). Topological evolution of a fast magnetic breakout CME in three dimensions. The Astrophysical Journal, 683, 1192–1206. doi:10.1086/589738.

    Article  ADS  Google Scholar 

  • Mackay, D. (2014). Chapter 14: Formation and Large-scale patterns of filament channels and filaments. In J. C. Vial & O. Engvold (Eds.), Solar prominences, ASSL (Vol. 415, pp. 353–378). Berlin: Springer.

    Google Scholar 

  • Mackay, D. H., & van Ballegooijen, A. A. (2005). New results in modeling the hemispheric pattern of solar filaments. The Astrophysical Journal Letter, 621, L77–L80. doi:10.1086/428904.

    Article  ADS  Google Scholar 

  • MacNeice, P., Antiochos, S. K., Phillips, A., Spicer, D. S., DeVore, C. R., & Olson, K. (2004). A numerical study of the breakout model for coronal mass ejection initiation. The Astrophysical Journal, 614, 1028–1041. doi:10.1086/423887.

    Article  ADS  Google Scholar 

  • Magara, T. (2004). A model for dynamic evolution of emerging magnetic fields in the sun. The Astrophysical Journal, 605, 480–492.

    Article  ADS  Google Scholar 

  • Manchester, IV, W., Gombosi, T., DeZeeuw, D., & Fan, Y. (2004). Eruption of a buoyantly emerging magnetic flux rope. The Astrophysical Journal, 610, 588–596. doi:10.1086/421516.

    Article  ADS  Google Scholar 

  • Mikic, Z., & Linker, J. A. (1994). Disruption of coronal magnetic field arcades. The Astrophysical Journal, 430, 898–912. doi:10.1086/174460.

    Article  ADS  Google Scholar 

  • Moore, R. L., Sterling, A. C., Hudson, H. S., & Lemen, J. R. (2001). Onset of the magnetic explosion in solar flares and coronal mass ejections. The Astrophysical Journal, 552, 833–848. doi:10.1086/320559.

    Article  ADS  Google Scholar 

  • Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., & Ross, C. L. (1979). The association of coronal mass ejection transients with other forms of solar activity. Solar Physics 61, 201–215. doi:10.1007/BF00155456.

    Article  ADS  Google Scholar 

  • Okamoto, T. J., Tsuneta, S., Lites, B. W., et al. (2008). Emergence of a helical flux rope under an active region prominence. The Astrophysical Journal Letter, 673, L215–L218. doi:10.1086/528792.

    Article  ADS  Google Scholar 

  • Pariat, E., & Démoulin, P. (2012). Estimation of the squashing degree within a three-dimensional domain. Astronomy & Astrophysics, 541, A78. doi:10.1051/0004-6361/201118515.

    Article  ADS  Google Scholar 

  • Petrie, G. J. D., & Low, B. C. (2005). The dynamical consequences of spontaneous current sheets in quiescent prominences. The Astrophysical Journal Supplement, 159, 288–313. doi:10.1086/431149.

    Article  ADS  Google Scholar 

  • Priest, E. R., & Forbes, T. G. (2002). The magnetic nature of solar flares. Astronomy & Astrophsical Review, 10, 313–377. doi:10.1007/s001590100013.

    Article  ADS  Google Scholar 

  • Raadu, M. A. (1972). Suppression of the kink instability for magnetic flux ropes in the chromosphere. Solar Physics, 22, 425–433. doi:10.1007/BF00148707.

    Article  ADS  Google Scholar 

  • Savcheva, A. S., van Ballegooijen, A. A., & DeLuca, E. E. (2012). Field topology analysis of a long-lasting coronal sigmoid. The Astrophysical Journal, 744, 78. doi:10.1088/0004-637X/744/1/78.

    Article  ADS  Google Scholar 

  • Schrijver, C. J. (2009). Driving major solar flares and eruptions: A review. Advances in Space Research, 43, 739–755. doi:10.1016/j.asr.2008.11.004.

    Article  ADS  Google Scholar 

  • Sturrock, P. A. (1991). Maximum energy of semi-infinite magnetic field configurations. The Astrophysical Journal, 380, 655–659. doi:10.1086/170620.

    Article  ADS  Google Scholar 

  • Titov, V. S. (2007). Generalized squashing factors for covariant description of magnetic connectivity in the solar corona. The Astrophysical Journal, 660, 863–873. doi:10.1086/512671.

    Article  ADS  Google Scholar 

  • Titov, V. S., & Démoulin, P. (1999). Basic topology of twisted magnetic configurations in solar flares. Astronomy & Astrophysics, 351, 707–720.

    ADS  Google Scholar 

  • Titov, V. S., Hornig, G., & Démoulin, P. (2002). Theory of magnetic connectivity in the solar corona. Journal of Geophysical Research (Space Physics), 107, 1164. doi:10.1029/2001JA000278.

    Article  ADS  Google Scholar 

  • Török, T., & Kliem, B. (2005). Confined and ejective eruptions of kink-unstable flux ropes. The Astrophysical Journal Letter, 630, L97–L100. doi:10.1086/462412.

    Article  ADS  Google Scholar 

  • Török, T., & Kliem, B. (2007). Numerical simulations of fast and slow coronal mass ejections. Astronomische Nachrichten, 328, 743. doi:10.1002/asna.200710795.

    Article  ADS  Google Scholar 

  • Török, T., Kliem, B., & Titov, V. S. (2004). Ideal kink instability of a magnetic loop equilibrium. Astronomy & Astrophysics, 413, L27–L30. doi:10.1051/0004-6361:20031691.

    Article  ADS  MATH  Google Scholar 

  • van der Holst, B., Manchester, IV, W., Sokolov, I. V., et al. (2009). Breakout coronal mass ejection or streamer blowout: The bugle effect. The Astrophysical Journal, 693, 1178. doi:10.1088/0004-637X/693/2/1178.

    Article  ADS  Google Scholar 

  • Webb, D. F., & Hundhausen, A. J. (1987). Activity associated with the solar origin of coronal mass ejections. Solar Physics, 108, 383–401. doi:10.1007/BF00214170.

    Article  ADS  Google Scholar 

  • Woltjer, L. (1958). A theorem on force-free magnetic fields. Proceedings of the National Academy of Science, 44, 489–491. doi:10.1073/pnas.44.6.489.

    Google Scholar 

  • Yeates, A. R., Mackay, D. H., & van Ballegooijen, A. A. (2008). Modelling the global solar corona II: Coronal evolution and filament chirality comparison. Solar Physics, 247, 103–121. doi:10.1007/s11207-007-9097-0.

    Article  ADS  Google Scholar 

  • Zhang, Y., Liu, J., & Zhang, H. (2008): Relationship between rotating sunspots and flares. Solar Physics, 247, 39–52. doi:10.1007/s11207-007-9089-0.

    Article  ADS  Google Scholar 

  • Zhang, M., & Low, B. C. (2004). Magnetic energy storage in the two hydromagnetic types of solar prominences. The Astrophysical Journal, 600, 1043–1051. doi:10.1086/379891.

    Article  ADS  Google Scholar 

  • Zhang, M., & Low, B. C. (2005). The hydromagnetic nature of solar coronal mass ejections. Annual Review of Astronomy and Astrophysics, 43, 103–137. doi:10.1146/annurev.astro.43.072103.150602.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Fang Fang, Terry Forbes, Judy Karpen, Zoran Mikic, Slava Titov, and Tibor Török for granting permission to reprint Figures from their original publications. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fan, Y. (2015). MHD Equilibria and Triggers for Prominence Eruption. In: Vial, JC., Engvold, O. (eds) Solar Prominences. Astrophysics and Space Science Library, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-10416-4_12

Download citation

Publish with us

Policies and ethics