Skip to main content

Dynamic Optimization Techniques for the Motion Coordination of Autonomous Vehicles

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 456))

Abstract

Problems of motion coordination for autonomous vehicles are discussed in the framework of dynamic programming (DP). The challenges of the practical deployment of DP-based controllers are illustrated with a formation control problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bardi M, Capuzzo-Dolcetta I (1997) Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhauser, Boston

    Google Scholar 

  2. Blanchini F, Miani S (2008) Set-theoretic methods in control. Birkhauser, Boston

    MATH  Google Scholar 

  3. Chen Y-Q, Wang Z (2005) Formation control: a review and a new consideration. In: 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005 (IROS 2005), pp 3181–3186

    Google Scholar 

  4. Cristiani E, Falcone M (2009) Fully-discrete schemes for the value function of pursuit-evasion games with state constraints. Ann Int Soc Dyn Games 10:178–205

    MathSciNet  Google Scholar 

  5. da Silva JE, de Sousa JB (2011) Dynamic programming techniques for feedback control. In: Proceedings of the IFAC 18th world congress, Milan, August 2011

    Google Scholar 

  6. Do KD (2011) Practical formation control of multiple underactuated ships with limited sensing ranges. Robot Auton Syst 59(6):457–471

    Article  Google Scholar 

  7. Dunbar WB, Murray RM (2006) Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4):549–558

    Article  MathSciNet  MATH  Google Scholar 

  8. Fiorelli E, Leonard NE, Bhatta P, Paley DA, Bachmayer R, Fratantoni DM (2006) Multi-AUV control and adaptive sampling in Monterey bay. IEEE J Oceanic Eng 31(4):935–948

    Article  Google Scholar 

  9. Fleming WH, Soner HM (2006) Controlled Markov processes and viscosity solutions. Springer, New York

    Google Scholar 

  10. Healey AJ (2001) Application of formation control for multi-vehicle robotic minesweeping. In: Proceedings of the 40th IEEE conference on decision and control, vol 2, pp 1497–1502

    Google Scholar 

  11. Hedrick JK, Tomizuka M, Varaiya P (1994) Control issues in automated highway systems. IEEE Control Syst 14(6):21–32

    Article  Google Scholar 

  12. Isaacs R (1965) Differential games; a mathematical theory with applications to warfare and pursuit, control and optimization. Wiley, New York

    Google Scholar 

  13. Kristiansen R, Nicklasson PJ (2009) Spacecraft formation flying: a review and new results on state feedback control. Acta Astronaut 65(11–12):1537–1552

    Article  Google Scholar 

  14. Lasserre J, Roubellat F (1985) Measuring decision flexibility in production planning. IEEE Trans Autom Control 30(5):447–452

    Article  MathSciNet  MATH  Google Scholar 

  15. Leonard NE, Fiorelli E (2001). Virtual leaders, artificial potentials and coordinated control of groups. In: Proceedings of the 40th IEEE conference on decision and control, vol 3, pp 2968–2973

    Google Scholar 

  16. Mitchell IM (2008) The flexible, extensible and efficient toolbox of level set methods. J Sci Comput 35(2–3):300–329

    Article  MathSciNet  MATH  Google Scholar 

  17. Turpin M, Michael N, Kumar V (2012) Decentralized formation control with variable shapes for aerial robots. In: 2012 IEEE international conference on robotics and automation (ICRA), pp 23–30

    Google Scholar 

  18. van der Walle D, Fidan B, Sutton A, Yu C, Anderson BDO (2008) Non-hierarchical UAV formation control for surveillance tasks. In: American control conference, 2008, pp 777–782

    Google Scholar 

  19. Vincent TL, Leitmann G (1970) Control-space properties of cooperative games. J Optim Theory Appl 6:91–113. doi:10.1007/BF00927045

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang PKC (1989) Navigation strategies for multiple autonomous mobile robots moving in formation. In: Proceedings of the IEEE/RSJ international workshop on intelligent robots and systems ’89. The autonomous mobile robots and its applications (IROS ’89), pp 486–493

    Google Scholar 

  21. Zhou C, Lei M, Zhou S, Zhang W (2011) Collision-free UAV formation flight control based on nonlinear MPC. In: 2011 international conference on electronics, communications and control (ICECC), vol 21, pp 1951–1956

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Estrela da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Silva, J.E., de Sousa, J.B., Lobo Pereira, F. (2015). Dynamic Optimization Techniques for the Motion Coordination of Autonomous Vehicles. In: van Schuppen, J., Villa, T. (eds) Coordination Control of Distributed Systems. Lecture Notes in Control and Information Sciences, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-319-10407-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10407-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10406-5

  • Online ISBN: 978-3-319-10407-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics