Skip to main content

Common, Correlated, and Private Information in Control of Decentralized Systems

  • Chapter
  • First Online:
Coordination Control of Distributed Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 456))

Abstract

Control and filtering of decentralized systems can benefit from a decomposition of the available observations into components. The concepts of common, private, correlated, and sufficient information have been proposed and are defined in this chapter. A decentralized control system in which the outputs and the states have been decomposed with respect to these concepts will facilitate the synthesis of communication laws and control laws for decentralized control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hexner G, Ho YC (1977) Information structure: common and private. IEEE Trans Inf Theor 23:390–393

    Article  MathSciNet  MATH  Google Scholar 

  2. Ho YC, Hexner G, Martin C (1976) Two person information structure. Part I: information structure: common and private. Part II: private information structures of A with respect to B. Report 663, Division of Engineering and Applied Physics, Harvard University, Cambridge, MA, USA, July 1976

    Google Scholar 

  3. Wyner AD (1975) The common information of two dependent random variables. IEEE Trans Inf Theor 21:163–179

    Article  MathSciNet  MATH  Google Scholar 

  4. Wyner AD (1978) A definition of conditional mutual information for arbitrary ensembles. Inf Control 38:51–59

    Article  MathSciNet  MATH  Google Scholar 

  5. van Schuppen JH (1982) The strong finite stochastic realization problem—Preliminary results. In: Bensoussan A, Lions JL (eds) Analysis and optimization of systems, vol 44., Lecture Notes in Control and Information SciencesSpringer, Berlin, pp 179–190

    Google Scholar 

  6. van Schuppen JH (2000) Stochastic realization of \(\sigma \)-algebras. In: Proceedings of 14th international symposium MTNS (published on CD-ROM only), Université de Perpignan, Perpignan

    Google Scholar 

  7. Ho YC (1980) Team decision theory and information structures. Proc IEEE 68:644–654

    Article  Google Scholar 

  8. Ho YC, Karstner P, Wong E (1978) Teams, signaling and information theory. IEEE Trans Autom Control 23:305–311

    Article  MATH  Google Scholar 

  9. Dick R, Hexner G, Ho Y (1977) On common information in decision problems. IEEE Trans Inf Theor 23:393–396

    Article  MATH  Google Scholar 

  10. Aumann RJ (1976) Agreeing to disagree. Ann Statist 4:1236–1239

    Article  MathSciNet  MATH  Google Scholar 

  11. Hotelling H (1936) Relation between two sets of variates. Biometrika 28:321–377

    Article  MATH  Google Scholar 

  12. Gittens RD (1985) Canonical analysis—A review with applications in ecology. Springer, Berlin

    Google Scholar 

  13. van Putten C, van Schuppen JH (1983) The weak and strong Gaussian probabilistic realization problem. J Multivariate Anal 13:118–137

    Article  MathSciNet  MATH  Google Scholar 

  14. Wonham WM (1979) Linear multivariable control: a geometric approach. Springer, Berlin

    MATH  Google Scholar 

  15. Kempker PL, Ran A, van Schuppen JH (2012) Controllability and observability of coordinated linear systems. Linear Algebra its Appl 437:121–167

    Article  MATH  Google Scholar 

  16. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  17. Gallager RG (1968) Information theory and reliable communication. Wiley, New York

    MATH  Google Scholar 

  18. Ihara S (1993) Information theory for continuous systems. World Scientific, Singapore

    Book  MATH  Google Scholar 

  19. Witsenhausen HS (1976) Some remarks on the concept of state. In: Directions in large-scale systems, many-person optimization, and decentralized control (Proceedings Symposium, Wakefield, MA, 1975), Plenum, New York, pp 69–75

    Google Scholar 

  20. Teneketzis D, Varaiya P (1984) Consensus in distributed estimation with inconsistent beliefs. Syst Control Lett 4:217–221

    Article  MathSciNet  MATH  Google Scholar 

  21. Washburn RB, Teneketzis D (1984) Asymptotic agreement among communicating decisionmakers. Stochastics 13:103–129

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan H. van Schuppen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van Schuppen, J.H. (2015). Common, Correlated, and Private Information in Control of Decentralized Systems. In: van Schuppen, J., Villa, T. (eds) Coordination Control of Distributed Systems. Lecture Notes in Control and Information Sciences, vol 456. Springer, Cham. https://doi.org/10.1007/978-3-319-10407-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10407-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10406-5

  • Online ISBN: 978-3-319-10407-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics