A Probabilistic Approach to Quantification of Melanin and Hemoglobin Content in Dermoscopy Images

  • Ali Madooei
  • Mark S. Drew
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


We describe a technique that employs the stochastic Latent Topic Models framework to allow quantification of melanin and hemoglobin content in dermoscopy images. Such information bears useful implications for analysis of skin hyperpigmentation, and for classification of skin diseases. The proposed method outperforms existing approaches while allowing for more stringent and probabilistic modeling than previously.


Independent Component Analysis Independent Component Analysis Hemoglobin Content Probabilistic Latent Semantic Analysis Seborrheic Keratosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Madooei, A., Drew, M., Sadeghi, M., Atkins, M.: Intrinsic melanin and hemoglobin colour components for skin lesion malignancy detection. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 315–322. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., Miyake, Y.: Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. ACM Trans. Graph. 22, 770–779 (2003)CrossRefGoogle Scholar
  3. 3.
    Shafer, S.: Using color to separate reflection components. Color Research & Application 10(4), 210–218 (1985)CrossRefGoogle Scholar
  4. 4.
    Dawson, J., Barker, D., Ellis, D., Grassam, E., Cotterill, J., Fisher, G., Feather, J.: A theoretical and experimental study of light absorption and scattering by in vivo skin. Physics in Medicine and Biology 25(4), 695–709 (1980)CrossRefGoogle Scholar
  5. 5.
    Wan, S., Parrish, J., Jaenicke, K.: Quantitative evaluation of ultraviolet induced erythema. Photochemistry and Photobiology 37(6), 643–648 (1983)CrossRefGoogle Scholar
  6. 6.
    Diffey, B., Oliver, R., Farr, P.: A portable instrument for quantifying erythema induced by ultraviolet radiation. The British Journal of Dermatology 111(6), 663–672 (1984)CrossRefGoogle Scholar
  7. 7.
    Takiwaki, H.: Measurement of erythema and melanin indices. In: Handbook of Non-Invasive Methods and the Skin, pp. 665–671. Informa Healthcare (1995)Google Scholar
  8. 8.
    Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE TNN 10(3), 626–634 (1999)Google Scholar
  9. 9.
    Shashanka, M., Raj, B., Smaragdis, P.: Sparse overcomplete latent variable decomposition of counts data. In: NIPS, vol. 1, p. 2 (2007)Google Scholar
  10. 10.
    Smaragdis, P., Raj, B., Shashanka, M.: Sparse and shift-invariant feature extraction from non-negative data. In: ICASSP, pp. 2069–2072 (2008)Google Scholar
  11. 11.
    Hennequin, R., Badeau, R., David, B.: Scale-invariant probabilistic latent component analysis. In: IEEE WASPAA 2011, pp. 129–132 (2011)Google Scholar
  12. 12.
    Takiwaki, H.: Measurement of skin color: practical application and theoretical considerations. J. of Medical Investigation 44(3-4), 121–126 (1998)Google Scholar
  13. 13.
    Argenziano, G., Soyer, H., De Giorgio, V., Piccolo, D., Carli, P., Delfino, M., Ferrari, A., et al.: Interactive Atlas of Dermoscopy (Book and CD-ROM). Edra Medical Publishing & New Media, Milan (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ali Madooei
    • 1
  • Mark S. Drew
    • 1
  1. 1.School of Computing ScienceSimon Fraser UniversityCanada

Personalised recommendations