TRIC: Trust Region for Invariant Compactness and Its Application to Abdominal Aorta Segmentation

  • Ismail Ben Ayed
  • Michael Wang
  • Brandon Miles
  • Gregory J. Garvin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


This study investigates segmentation with a novel invariant compactness constraint. The proposed prior is a high-order fractional term, which is not directly amenable to powerful optimizers. We derive first-order Gateâux derivative approximations of our compactness term and adopt an iterative trust region paradigm by splitting our problem into constrained sub-problems, each solving the approximation globally via a Lagrangian formulation and a graph cut. We apply our algorithm to the challenging task of abdominal aorta segmentation in 3D MRI volumes, and report quantitative evaluations over 30 subjects, which demonstrate that the results correlate well with independent manual segmentations. We further show the use of our method in several other medical applications and demonstrate that, in comparison to a standard level-set optimization, our algorithm is one order of magnitude faster.


  1. 1.
    Ben Ayed, I., Lu, Y., Li, S., Ross, I.: Left ventricle tracking using overlap priors. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 1025–1033. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Ben Ayed, I., Punithakumar, K., Garvin, G.J., Romano, W., Li, S.: Graph cuts with invariant object-interaction priors: Application to intervertebral disc segmentation. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 221–232. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient n-d image segmentation. International Journal of Computer Vision 70(2), 109–131 (2006)CrossRefGoogle Scholar
  4. 4.
    de Bruijne, M., van Ginneken, B., Viergever, M.A., Niessen, W.J.: Interactive segmentation of abdominal aortic aneurysms in cta images. Medical Image Analysis 8(2), 127–138 (2004)CrossRefGoogle Scholar
  5. 5.
    Das, P., Veksler, O., Zavadsky, V., Boykov, Y.: Semiautomatic segmentation with compact shape prior. Image and Vision Computing 27(1-2), 206–219 (2009)CrossRefGoogle Scholar
  6. 6.
    Duquette, A.A., Jodoin, P.M., Bouchot, O., Lalande, A.: 3D segmentation of abdominal aorta from ct-scan and mr images. Computerized Medical Imaging and Graphics 36(4), 294–303 (2012)CrossRefGoogle Scholar
  7. 7.
    Gorelick, L., Schmidt, F., Boykov, Y.: Fast trust region for segmentation. In: CVPR, pp. 1714–1721 (2013)Google Scholar
  8. 8.
    Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3d vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13(6), 819–845 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, C., Xu, C., Gui, C., Fox, M.D.: Level set evolution without re-initialization: A new variational formulation. In: CVPR, pp. 430–436 (2005)Google Scholar
  10. 10.
    Linguraru, M.G., Pura, J.A., Pamulapati, V., Summers, R.M.: Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT. Medical Image Analysis 16(4), 904–914 (2012)CrossRefGoogle Scholar
  11. 11.
    Nambakhsh, C.M.S., Peters, T.M., Islam, A., Ben Ayed, I.: Right ventricle segmentation with probability product kernel constraints. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 509–517. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Niethammer, M., Zach, C.: Segmentation with area constraints. Medical Image Analysis 17(1), 101–112 (2013)CrossRefGoogle Scholar
  13. 13.
    Qiu, W., Yuan, J., Ukwatta, E., Sun, Y., Rajchl, M., Fenster, A.: Fast globally optimal segmentation of 3d prostate mri with axial symmetry prior. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 198–205. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Rousson, M., Cremers, D.: Efficient kernel density estimation of shape and intensity priors for level set segmentation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005, Part II. LNCS, vol. 3750, pp. 757–764. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Schaap, M., et al.: Coronary lumen segmentation using graph cuts and robust kernel regression. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 528–539. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Veksler, O.: Star shape prior for graph-cut image segmentation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 454–467. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Zunic, J.D., Hirota, K., Rosin, P.L.: A Hu moment invariant as a shape circularity measure. Pattern Recognition 43(1), 47–57 (2010)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ismail Ben Ayed
    • 1
  • Michael Wang
    • 2
  • Brandon Miles
    • 3
  • Gregory J. Garvin
    • 4
  1. 1.GE HealthcareLondonCanada
  2. 2.McGill UniversityMontrealCanada
  3. 3.Simon Fraser UniversityBurnabyCanada
  4. 4.St. Joseph’s Health Care HospitalLondonCanada

Personalised recommendations