Topology Preservation and Anatomical Feasibility in Random Walker Image Registration

  • Shawn Andrews
  • Lisa Tang
  • Ghassan Hamarneh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


The random walker image registration (RWIR) method is a powerful tool for aligning medical images that also provides useful uncertainty information. However, it is difficult to ensure topology preservation in RWIR, which is an important property in medical image registration as it is often necessary for the anatomical feasibility of an alignment. In this paper, we introduce a technique for determining spatially adaptive regularization weights for RWIR that ensure an anatomically feasible transformation. This technique only increases the run time of the RWIR algorithm by about 10%, and avoids over-smoothing by only increasing regularization in specific image regions. Our results show that our technique ensures topology preservation and improves registration accuracy.


Image Registration Target Registration Error Uncertainty Information Deformable Image Registration Deformable Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part I. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE TPAMI 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  3. 3.
    Cobzas, D., Sen, A.: Random walks for deformable image registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 557–565. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. MedIA 12(6), 731–741 (2008)Google Scholar
  5. 5.
    Karaçalı, B., Davatzikos, C.: Topology preservation and regularity in estimated deformation fields. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 426–437. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Lotfi, T., Tang, L., Andrews, S., Hamarneh, G.: Improving probabilistic image registration via reinforcement learning and uncertainty evaluation. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 187–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Popuri, K., Cobzas, D., Jägersand, M.: A variational formulation for discrete registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part III. LNCS, vol. 8151, pp. 187–194. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Risholm, P., Pieper, S., Samset, E., Wells III, W.M.: Summarizing and visualizing uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 554–561. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Rohlfing, T., Maurer Jr., C.R., Bluemke, D.A., Jacobs, M.A.: Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE TMI 22(6), 730–741 (2003)Google Scholar
  10. 10.
    Tang, L., Hamarneh, G.: Random walks with efficient search and contextually adapted image similarity for deformable registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 43–50. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Tang, L., Hamarneh, G., Abugharbieh, R.: Reliability-driven, spatially-adaptive regularization for deformable registration. In: Fischer, B., Dawant, B.M., Lorenz, C. (eds.) WBIR 2010. LNCS, vol. 6204, pp. 173–185. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Tang, T., Chung, A.: Non-rigid image registration using graph-cuts. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 916–924. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shawn Andrews
    • 1
  • Lisa Tang
    • 1
  • Ghassan Hamarneh
    • 1
  1. 1.Medical Image Analysis LabSimon Fraser UniversityCanada

Personalised recommendations