Speckle Reduction in Optical Coherence Tomography by Image Registration and Matrix Completion

  • Jun Cheng
  • Lixin Duan
  • Damon Wing Kee Wong
  • Dacheng Tao
  • Masahiro Akiba
  • Jiang Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8673)


Speckle noise is problematic in optical coherence tomography (OCT). With the fast scan rate, swept source OCT scans the same position in the retina for multiple times rapidly and computes an average image from the multiple scans for speckle reduction. However, the eye movement poses some challenges. In this paper, we propose a new method for speckle reduction from multiply-scanned OCT slices. The proposed method applies a preliminary speckle reduction on the OCT slices and then registers them using a global alignment followed by a local alignment based on fast iterative diamond search. After that, low rank matrix completion using bilateral random projection is utilized to iteratively estimate the noise and recover the underlying clean image. Experimental results show that the proposed method achieves average contrast to noise ratio 15.65, better than 13.78 by the baseline method used currently in swept source OCT devices. The technology can be embedded into current OCT machines to enhance the image quality for subsequent analysis.


Speckle matrix completion bilateral random projection 


  1. 1.
    Lopes, A., Touzi, R., Nesby, E.: Adaptive speckle filter and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990)CrossRefGoogle Scholar
  2. 2.
    Lim, S.J.: Two-Dimensional Signal and Image Processing. Prentice Hall (1990)Google Scholar
  3. 3.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12 (1990)Google Scholar
  4. 4.
    Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Processing 11, 1260–1270 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Szkulmowski, M., Wojtkowski, M.: Averaging techniques for oct imaging. Opt. Express 21, 9757–9773 (2013)CrossRefGoogle Scholar
  6. 6.
    Thévenaz, P., Ruttimann, U.E., Unser, M.: A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Processing 7, 27–41 (1998)CrossRefGoogle Scholar
  7. 7.
    Zhu, S., Ma, K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. Image Processing 9, 287–290 (2000)CrossRefGoogle Scholar
  8. 8.
    Candès, E., Recht, B.: Exact matrix completion via convex optimization. Commun. ACM 55, 111–119 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhou, T., Tao, D.: Bilateral random projections. In: IEEE Int. Symp. on Information Theory, pp. 1286–1290 (2012)Google Scholar
  10. 10.
    Zhou, T., Tao, D.: Godec: Randomized low-rank & sparse matrix decomposition in noisy case. In: Proc. of the 28th Int. Conf. on Machine Learning, pp. 33–40 (2011)Google Scholar
  11. 11.
    Rogowaka, J., Brezinski, M.E.: Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE Trans. Medical Imaging 19, 1261–1266 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jun Cheng
    • 1
  • Lixin Duan
    • 1
  • Damon Wing Kee Wong
    • 1
  • Dacheng Tao
    • 2
  • Masahiro Akiba
    • 3
  • Jiang Liu
    • 1
  1. 1.Institute for Infocomm ResearchAgency for Science, Technology and ResearchSingapore
  2. 2.University of TechnologySydneyAustralia
  3. 3.Topcon CorporationTokyoJapan

Personalised recommendations