Skip to main content

A Cost-Effective Automatic 3D Reconstruction Pipeline for Plants Using Multi-view Images

  • Conference paper
Book cover Advances in Autonomous Robotics Systems (TAROS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8717))

Included in the following conference series:

Abstract

Plant phenotyping involves the measurement, ideally objectively, of characteristics or traits. Traditionally, this is either limited to tedious and sparse manual measurements, often acquired destructively, or coarse image-based 2D measurements. 3D sensing technologies (3D laser scanning, structured light and digital photography) are increasingly incorporated into mass produced consumer goods and have the potential to automate the process, providing a cost-effective alternative to current commercial phenotyping platforms. We evaluate the performance, cost and practicability for plant phenotyping and present a 3D reconstruction method from multi-view images acquired with a domestic quality camera. This method consists of the following steps: (i) image acquisition using a digital camera and turntable; (ii) extraction of local invariant features and matching from overlapping image pairs; (iii) estimation of camera parameters and pose based on Structure from Motion(SFM); and (iv) employment of a patch based multi-view stereo technique to implement a dense 3D point cloud. We conclude that the proposed 3D reconstruction is a promising generalized technique for the non-destructive phenotyping of various plants during their whole growth cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcantarilla, P.F., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conf., BMVC (2013)

    Google Scholar 

  2. Biskup, B., Scharr, H., Rascher, U.S.: A stereo imaging system for measuring structural parameters of plant canopies. Plant, Cell & Environment 30 (2007)

    Google Scholar 

  3. Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110, 346–359 (2008)

    Article  Google Scholar 

  4. Cobb, J.N., DeClerck, G., Greenberg, A., Clark, R., McCouch, S.: Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics 126, 867–887 (2013)

    Article  Google Scholar 

  5. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Andwu, A.Y.: An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J. of the ACM 45(6), 891–923 (1998)

    Article  MATH  Google Scholar 

  6. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  7. Stewenius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing 60, 284–294 (2006)

    Article  Google Scholar 

  8. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Tran. PAMI 32, 1362–1376 (2010)

    Article  Google Scholar 

  9. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2004)

    Google Scholar 

  10. Hern, C., Esteban, N., Schmitt, F.: Silhouette and stereo fusion for 3d object modeling. Comput. Vis. Image Underst. 96, 367–392 (2004)

    Article  Google Scholar 

  11. Ivanov, N., et al.: Computer stereo plotting for 3-d reconstruction of a maize canopy. Agricultural and Forest Meteorology 75, 85–102 (1995)

    Article  Google Scholar 

  12. Jancosek, M., Pajdla, T.: Multi-view reconstruction preserving weakly-supported surfaces. In: Proc. CVPR, pp. 3121–3128 (2011)

    Google Scholar 

  13. Kaminuma, E., Heida, N., Tsumoto, Y., Yamamoto, N., Goto, N., Okamoto, N., Konagaya, A., Matsui, M., Toyoda, T.: Automatic quantification of morphological traits via three-dimensional measurement of arabidopsis. Plant 38, 358–365 (2004)

    Article  Google Scholar 

  14. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  15. Morel, J.M., Yu, G.: Asift: A new framework for fully affine invariant image comparison. SIAM J. Img. Sci. 2(2), 438–469 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Organisation, E.P.S.: White paper of plant phenotyping. Tech. rep. (2010)

    Google Scholar 

  17. Paproki, A., Sirault, X., Berry, S., Furbank, R., Fripp, J.: A novel mesh processing based technique for 3d plant analysis. BMC Plant Biology 12 (2012)

    Google Scholar 

  18. Prince, S.J.D.: Computer Vision: Models, Learning, and Inference. Cambridge University Press (2012)

    Google Scholar 

  19. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J.D., Kang, S.B.: Image-based plant modeling. ACM Trans. Graphics 25, 599–604 (2006)

    Article  Google Scholar 

  20. Seitz, S.M., Curless, B., Diebel, J., Scharstein, D., Szeliski, R.: A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proc. CVPR, vol. 1, pp. 519–528 (2006)

    Google Scholar 

  21. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3d. In: Proc. SIGGRAPH, pp. 835–846 (2006)

    Google Scholar 

  22. Stephens, C.H.: Mike: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 5–10 (1988)

    Google Scholar 

  23. Santos, T., Oliveira, A.: Image-based 3d digitizing for plant architecture analysis and phenotyping. In: Proc. Workshop on Industry Applications in SIB-GRAPI (2012)

    Google Scholar 

  24. Tola, E., Lepetit, V., Fua, P.: Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Tran. PAMI 32(5), 815–830 (2010)

    Article  Google Scholar 

  25. Vogiatzis, G., Hern, C., Esteban, N., Torr, P.H.S., Cipolla, R.: Multiview stereo via volumetric graph-cuts and occlusion robust photo-consistency. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2241–2246 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lou, L., Liu, Y., Sheng, M., Han, J., Doonan, J.H. (2014). A Cost-Effective Automatic 3D Reconstruction Pipeline for Plants Using Multi-view Images. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (eds) Advances in Autonomous Robotics Systems. TAROS 2014. Lecture Notes in Computer Science(), vol 8717. Springer, Cham. https://doi.org/10.1007/978-3-319-10401-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10401-0_20

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10400-3

  • Online ISBN: 978-3-319-10401-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics