Skip to main content

Attractor Equivalence: An Observational Semantics for Reaction Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8738))

Abstract

We study observational semantics for networks of chemical reactions as used in systems biology. Reaction networks without kinetic information, as we consider, can be identified with Petri nets. We present a new observational semantics for reaction networks that we call the attractor equivalence. The main idea of the attractor equivalence is to observe reachable attractors and reachability of an attractor divergence in all possible contexts. The attractor equivalence can support powerful simplifications for reaction networks as we illustrate at the example of the Tet-On system. Alternative semantics based on bisimulations or traces, in contrast, do not support all needed simplifications.

This work has been funded by the French National Research Agency research grant Iceberg ANR-IABI-3096.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araki, T., Kasami, T.: Decidable problems on the strong connectivity of petri net reachability sets. Theoretical Computer Science (1977)

    Google Scholar 

  2. Batmanov, K., Kuttler, C., Lemaire, F., Lhoussaine, C., Versari, C.: Symmetry-based model reduction for approximate stochastic analysis. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 49–68. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg, G. (ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)

    Chapter  Google Scholar 

  4. Berthelot, G., Roucairol, G.: Reduction of petri-nets. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 202–209. Springer, Heidelberg (1976)

    Chapter  Google Scholar 

  5. Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325(1) (2004)

    Google Scholar 

  7. Desel, J.: Reduction and design of well-behaved concurrent systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 166–181. Springer, Heidelberg (1990)

    Google Scholar 

  8. Dokoumetzidis, A., Aarons, L.: Proper lumping in systems biology models, p. 3 (October 2009)

    Google Scholar 

  9. Esparza, J., Silva, M.: Top-down synthesis of live and bounded free choice nets. In: Rozenberg, G. (ed.) APN 1991. LNCS, vol. 524, pp. 118–139. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  10. Fages, F., Soliman, S.: Formal cell biology in biocham. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Galpin, V., Hillston, J.: Equivalence and discretisation in bio-pepa. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 189–204. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Galpin, V., Hillston, J., Ciocchetta, F.: A semi-quantitative equivalence for abstracting from fast reactions. Electronic Proceedings in Theoretical Computer Science 67(CompMod) (September 2011)

    Google Scholar 

  13. Gay, S., Soliman, S., Fages, F.: A graphical method for reducing and relating models in systems biology. Bioinformatics 26(18) (September 2010)

    Google Scholar 

  14. van Glabbeek, R.J.: The linear time-branching time spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990)

    Google Scholar 

  15. Gossen, M., Bujard, H.: Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences of the United States of America 89(12) (June 1992)

    Google Scholar 

  16. Gossen, M., Freundlieb, S., Bender, G., Müller, G., Hillen, W., Bujard, H.: Transcriptional activation by tetracyclines in mammalian cells. Science 268(5218) (June 1995)

    Google Scholar 

  17. Haddad, S.: A reduction theory for coloured nets. In: High-level Petri Nets, pp. 399–425 (1991)

    Google Scholar 

  18. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Hoare, C.: A model for communicating sequential process (1980)

    Google Scholar 

  20. Howell, R., Rosier, L., Yen, H.: A taxonomy of fairness and temporal logic problems for Petri nets. Theoretical Computer Science 82, 341–372 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Huang, Z., Moya, C., Jayaraman, A., Hahn, J.: Using the Tet-On system to develop a procedure for extracting transcription factor activation dynamics. Molecular Bio. Systems 6(10) (October 2010)

    Google Scholar 

  22. Jantzen, M.: Language theory of Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 254, pp. 397–412. Springer, Heidelberg (1987)

    Google Scholar 

  23. John, M., Lhoussaine, C., Niehren, J., Versari, C.: Biochemical reaction rules with constraints. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 338–357. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  24. Johnsonbaugh, R., Murata, T.: Additional methods for reduction and expansion of marked graphs. IEEE Transactions on Circuits and Systems 28(10) (1981)

    Google Scholar 

  25. Lee, K.-H., Favrel, J.: Hierarchical reduction method for analysis and decomposition of Petri nets. IEEE Transactions on Systems, Man, and Cybernetics SMC-15(2) (March 1985)

    Google Scholar 

  26. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)

    Book  Google Scholar 

  27. Murata, T., Koh, J.: Reduction and expansion of live and safe marked graphs. IEEE Transactions on Circuits and Systems 27(1) (1980)

    Google Scholar 

  28. Naldi, A., Monteiro, P.T., Chaouiya, C.: Efficient handling of large signalling-regulatory networks by focusing on their core control. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, vol. 7605, pp. 288–306. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction of logical regulatory graphs. Theoretical Computer Science 412(21) (May 2011)

    Google Scholar 

  30. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  31. Pitts, A.M.: Operational semantics and program equivalence. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 378–412. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  32. Plotkin, G.D.: A calculus of chemical systems. In: Tannen, V., Wong, L., Libkin, L., Fan, W., Tan, W.-C., Fourman, M. (eds.) Buneman Festschrift 2013. LNCS, vol. 8000, pp. 445–465. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  33. Pomello, L., Rozenberg, G., Simone, C.: A survey of equivalence notions for net based systems. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 410–472. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  34. Queille, J., Sifakis, J.: Fairness and related properties in transition systems–a temporal logic to deal with fairness. Acta Informatica 19(3), 195–220 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  35. Radulescu, O., Gorban, A.N., Zinovyev, A., Lilienbaum, A.: Robust simplifications of multiscale biochemical networks. BMC Systems Biology 2 (January 2008)

    Google Scholar 

  36. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: Proceedings of the 1st International Conference on Intelligent Systems for Molecular Biology, pp. 328–336. AAAI (1993)

    Google Scholar 

  37. Sabel, D., Schauss, M.S.: Conservative concurrency in haskell. In: Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science. IEEE (2012)

    Google Scholar 

  38. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. ACM Trans. Program. Lang. Syst. 33(1) (January 2011)

    Google Scholar 

  39. Schmidt-Schauss, M., Sabel, D., Niehren, J., Schwinghammer, J.: Observational Program Calculi and the Correctness of Translations. Rapport de recherche, Universität Frankfurt, Laboratoire d’Informatique Fondamentale de Lille - LIFL, LINKS - INRIA Lille - Nord Europe (May 2013)

    Google Scholar 

  40. Sloan, R.H., Buy, U.: Reduction rules for time Petri nets. Acta Informatica 33(7), 687–706 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. Smith, N.P., Crampin, E.J.: Development of models of active ion transport for whole-cell modelling: cardiac sodium-potassium pump as a case study. Progress in Biophysics and Molecular Biology 85(2-3) (2004)

    Google Scholar 

  42. Soliman, S.: Invariants and other structural properties of biochemical models as a constraint satisfaction problem. Algorithms for Molecular Biology 7(1) (2012)

    Google Scholar 

  43. Soliman, S., Fages, F., Radulescu, O., et al.: A constraint solving approach to tropical equilibration and model reduction. In: CB-ninth Workshop on Constraint Based Methods for Bioinformatics, Colocated with CP 2013 (2013)

    Google Scholar 

  44. Suzuki, I., Murata, T.: A method for stepwise refinement and abstraction of Petri nets. Journal of Computer and System Sciences 27(1) (August 1983)

    Google Scholar 

  45. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. Journal of Theoretical Biology 153(1), 1–23 (1991)

    Article  Google Scholar 

  46. Uhlendorf, J., Miermont, A., Delaveau, T., Charvin, G., Fages, F., Bottani, S., Batt, G., Hersen, P.: Long-term model predictive control of gene expression at the population and single-cell levels. Proceedings of the National Academy of Sciences 109(35) (2012)

    Google Scholar 

  47. Valette, R.: Analysis of Petri nets by stepwise refinements. Journal of Computer and System Sciences 18(1), 35–46 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Madelaine, G., Lhoussaine, C., Niehren, J. (2014). Attractor Equivalence: An Observational Semantics for Reaction Networks. In: Fages, F., Piazza, C. (eds) Formal Methods in Macro-Biology. FMMB 2014. Lecture Notes in Computer Science(), vol 8738. Springer, Cham. https://doi.org/10.1007/978-3-319-10398-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10398-3_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10397-6

  • Online ISBN: 978-3-319-10398-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics