Skip to main content

Phytoremediation and Environmental Factors

  • Chapter
  • First Online:
Phytoremediation

Abstract

Phytoremediation includes a range of plant-based remediation techniques such as phytoextraction, phytostabilization, phytoimmobilization, rhizofiltration, and phytovolatilization focused on reduction of the environment pollution level. The efficiency of the techniques—regarding the type of pollution—depends on numerous environmental factors. Some of them are described in this chapter. Proper plant growth is not possible without access to water, which determines transport of numerous substances and compounds important in the life of plants. Stress associated with water availability leads to disruption of water potential gradients, loss of turgor, disruption of membrane integrity, and denaturation of proteins. Soil—being a very complex medium—is the most important environmental factor in the growth and development of plant life. Many of the soil components and parameters have an essential influence on the effectiveness of the phytoremediation process. Metals are not degraded by chemical or microbial processes and in consequence are accumulated in soils and aquatic sediments. During phytoremediation, plants may transport trace elements and bind them in their cell walls, chelate them in the soil in inactive forms using secreted organic compounds, or complex them in their tissue after transporting them into specialized cells and cell compartments. Availability for plants of trace elements contaminating the environment depends on the pH value, a very important factor in the form of their occurrence. Rhizospheric microorganisms (mainly bacteria and mycorrhizal fungi) may significantly increase the bioavailability of trace metals in soil, and significantly affect phytoremediation, as described in detail in this chapter. An important factor in trace elements’ availability in the soil environment, apart from bacteria, is the effect of fungi—organisms closely involved in the carbon cycle in nature. The increasing salinity of soil worldwide reduces growth of plants because it is a stress factor strongly influencing plants. Moreover, earthworms have a direct impact on the cycle and metabolism of nutrients, which has a significant effect on the physical, chemical, and biological properties of the soil and—as a consequence—influence the techniques described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Migahed FF, Ibrahim AH (2002) Interactive effects of endomycorrhizal fungus Glomus etunicatum and phosphorus fertilization on growth and metabolic activities of broad bean plants under drought stress conditions. Pak J Biol Sci 5:835–841. doi:10.3923/pjbs.2002.835.841

    Google Scholar 

  • Adeniji BA, Budimir-Hussey MT, Macfie SM (2010) Production of organic acids and adsorption of Cd on roots of durum wheat (Triticum turgidum L. var. durum). Acta Physiol Plant 32:1063–1072. doi:10.1007/s11738-010-0498-6

    CAS  Google Scholar 

  • Alford ER, Pilon-Smits EAH, Paschke MW (2010) Metallophytes – a view from the rhizosphere. Plant Soil 337:33–50. doi:10.1007/s11104-010-0482-3

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–888

    CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88. doi:10.1007/s005720050166

    CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril J, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90. http://link.springer.com/content/pdf/10.1023%2FB%3ARESB.0000040059.70899.3d.pdf

  • Angle JS, Baker AJM, Whiting SN, Chaney RL (2003) Soil moisture effects on uptake of metals by Thlaspi, Alyssum, and Berkheya. Plant Soil 256:325–332. doi:10.1023/A:1026137624250

    CAS  Google Scholar 

  • Asrar AA, Elhindi KM (2011) Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J Biol Sci 19:38–46. doi:10.1016/j.sjbs.2010.06.007

    Google Scholar 

  • Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirrhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50:305–316. doi:10.1007/s11099-012-0024-8

    CAS  Google Scholar 

  • Atkinson C, Jolley DF, Simpson SL (2007) Effect of overlying water pH, dissolved oxygen, salinity and sediment disturbances on metal release and sequestration from metal contaminated marine sediments. Chemosphere 69:1428–1437. doi:10.1016/j.chemosphere.2007.04.068

    CAS  PubMed  Google Scholar 

  • Atwell BJ, Kriedemann PE, Turnbull CGN (1999) Plants in action. Adaptation in nature, performance in cultivation. Macmillan, Melbourne

    Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097

    Google Scholar 

  • Baghour M, Moreno DA, Villora G, Hernández J, Castilla N, Romero L (2001) Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta). J Environ Sci Heal A 36:1389–1401. http://hera.ugr.es/doi/15022420.pdf

  • Bar-Ness E, Chen Y, Hadar Y, Marchner H, Romheld V (1991) Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil 130:231–241. doi:10.1007/BF00011878

    CAS  Google Scholar 

  • Beard KH, Wang D, Waite CE, Decker KLM, Hawley GJ, DeHayes DD, Hughes JW, Cumming JR (2005) Quantifying ecosystem controls and their contextual interactions on nutrient export from developing forest mesocosms. Ecosystems 8:210–224

    CAS  Google Scholar 

  • Buekers J (2007) Fixation of cadmium, copper, nickel and zinc in soil: kinetics, mechanisms and its effect on metal bioavailability. Dissertation, Katholieke Universiteit Leuven, Belgium

    Google Scholar 

  • Campbell PGC (2006) Cadmium – a priority pollutant. Environ Chem 3:387–388. doi:10.1071/EN06075

    CAS  Google Scholar 

  • Cassina L, Tassi E, Morelli E, Giorgetti L, Remorini D, Chaney RL, Barbafieri M (2011) Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Int J Phytoremediation 13:90–101. doi:10.1080/15226514.2011.568538

    PubMed  Google Scholar 

  • Chalupa V (1984) In vitro propagation of oak (Quercus robur L.) and linden (Tilia cordata Mill.). Biol Plantarum 26:374–377. doi:10.1007/BF02898577

    CAS  Google Scholar 

  • Chapin III FS, Bloom AJ, Field ChB, Waring Source RH (1987) Plant Responses to Multiple Environmental Factors. Bioscience 37:49–57. http://connection.ebscohost.com/c/articles/10130289/plant-responses-multiple -environmental-factors

  • Chen Y, Aviad T (1990) Effects of Humic Substances on Plant Growth. In: MacCarthy P, Clapp CE, Malcolm RL, Bloom PR (eds) Humic substances in soil and crop sciences: selected readings. Soil Science Society of America, Madison, WI, pp 161–186

    Google Scholar 

  • Chen YX, Wang YP, Wu WX, Lin Q, Xue SG (2006) Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator. Sci Total Environ 356:247–255. doi:10.1016/j.scitotenv.2005.04.028

    CAS  PubMed  Google Scholar 

  • Chrostowski P, Durda JL, Edelmann KG (1991) The use of natural processes for the control of chromium migration. Remediation 2:341–351. doi:10.1002/rem.3440010309

    Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant. 53.100301.135154

    CAS  PubMed  Google Scholar 

  • Comino E, Whiting S, Neumann P, Baker A (2005) Salt (NaCl) tolerance in the Ni hyperaccumulator Alyssum murale and the Zn hyperaccumulator Thlaspi caerulescens. Plant Soil 270:91–99. doi:10.1007/s11104-004-1233-0

    CAS  Google Scholar 

  • Costa C, Dwyer LM, Hamilton RI, Hamel C, Nantais L, Smith DL (2000) A sampling method for measurement of large root systems with scanner-based image analysis. Agron J 92:621–627. doi:10.2134/agronj2000.924621x

    Google Scholar 

  • Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187. doi:10.1038/35041539

    CAS  PubMed  Google Scholar 

  • Davies PJ (1987) Plant hormones and their role in plant growth and development. (first edition), Martinus Nijhoff Publishers (Kluwer Academic Publishers Group), Dordrecht, Boston, Lancaster, ISBN 90-247-3497-5

    Google Scholar 

  • de la Fuente C, Clemente R, Bernal MP (2008) Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil. Ecotoxicol Environ Saf 70:207–215. doi:10.1016/j.ecoenv.2007.05.021

    PubMed  Google Scholar 

  • Demirbas A (2001) Concentrations of 21 metals in 18 species of mushrooms growing in the East Black Sea region. Food Chem 75:453–457. doi:10.1016/S0308-8146(01)00236-9

    CAS  Google Scholar 

  • Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25. doi:10.1016/j.chemosphere.2008.09.079

    CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694. doi:10.1111/j.1365-3040.2009.02028.x

    CAS  PubMed  Google Scholar 

  • Dinicola RS (2006) Continued biodegradation of chloroethene compounds in ground water at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington: U.S. Geological Survey Scientific Investigations Report 2006-5056

    Google Scholar 

  • Domínguez-Crespo MA, Sánchez-Hernández ZE, Torres-Huerta AM, Negrete-Rodríguez MX, Conde-Barajas E, Flores-Vela A (2012) Effect of the heavy metals Cu, Ni, Cd and Zn on the growth and reproduction of epigeic earthworms (E. fetida) during the vermistabilization of municipal sewage sludge. Water Air Soil Pollut 223:915–931. doi:10.1007/s11270-011-0913-7

    Google Scholar 

  • Drzewiecka K, Mleczek M, Gąsecka M, Magdziak Z, Goliński P (2012) Changes in Salix viminalis L. cv. ‘Cannabina’ morphology and physiology in response to nickel ions – hydroponic investigations. J Hazard Mater 217–218:429–438. doi:10.1016/j.jhazmat.2012.03.056

    PubMed  Google Scholar 

  • Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR (2008) Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. Afr J Biotechnol 7:3188–3192. doi:10.5897/AJB08.476

    CAS  Google Scholar 

  • Ehleringer JR, Dawson TE (1992) Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ 15:1073–1082. doi:10.1111/j.1365-3040.1992.tb01657.x

    CAS  Google Scholar 

  • Ei-D AMSA, Salama A, Wareing PF (1979) Effects of mineral nutrition on endogenous cytokinins in plants of sunflower (Helianthus annuus L.). J Exp Bot 30:971–981. doi:10.1093/jxb/30.5.971

    Google Scholar 

  • Eriksson J, Andersson A, Andersson R (1997) The state of Swedish farmlands. Tech. Rep. 4778, Swedish Environmental Protection Agency, Stockholm, Sweden

    Google Scholar 

  • Fernandez MT, Mira ML, Florêncio MH, Jennings KR (2002) Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J Inorg Biochem 92:105–111. doi:10.1016/S0162-0134(02)00511-1

    CAS  PubMed  Google Scholar 

  • Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P (2003) Copper and lead concentrations in salt marsh plants on the Suir Estuary, Ireland. Environ Pollut 123:67–74. doi:10.1016/S0269-7491(02)00366-4

    CAS  PubMed  Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:1–11. doi:10.1055/s-2004-820867

    Google Scholar 

  • Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274. doi:10.1016/j.envpol.2004.05.036

    CAS  PubMed  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514. doi:10.1139/w09-010

    CAS  PubMed  Google Scholar 

  • Gliessman SR (1998) Agroecology: ecological processes in sustainable agriculture. Sleeping Bear, Chelsea, MI

    Google Scholar 

  • Gonzales V, Diez-Ortiz M, Simón M, van Gestel CAM (2013) Assessing the impact of organic and inorganic amendments on the toxicity and bioavailability of a metal contaminated soil to the earthworm Eisenia andrei. Environ Sci Pollut Res. doi:10.1007/s11356-013-1773-z

    Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. doi:10.1016/j.envpol.2004.01.004

    CAS  PubMed  Google Scholar 

  • Greger M, Kautsky L, Sandberg T (1995) A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environ Exp Bot 35:215–225. doi: http://dx.doi.org/10.1016/0098-8472(94)00047-9

  • Grill E, Winnackert EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443. http://www.pnas.org/content/84/2/439

  • Hammer D, Keller C (2002) Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual 31:1561–1569. doi:10.2134/jeq2002.1561

    CAS  PubMed  Google Scholar 

  • Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33:163–203. doi:10.1146/annurev.pp. 33.060182.001115

    CAS  Google Scholar 

  • Hendrick RL, Pregitzer KS (1996) Applications of minirhizotrons to understand root function in forests and other natural ecosystems. Plant Soil 185:293–304. doi:10.1007/BF02257535

    CAS  Google Scholar 

  • Hendriks JH, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133:838–849. doi:10.1104/pp.103.024513

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ibrahim HA, Abdel-Fattah GM, Eman FM, Abd El-Aziz MH, Shohr AE (2011) Arbuscular mycorrhizal fungi and spermine alleviate the adverse effects of salinity stress on electrolyte leakage and productivity of wheat plants. Phyton Ann Rei Bot A 51:261–276

    Google Scholar 

  • Imsande J (1998) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plantarum 103:139–144. doi:10.1034/j.1399-3054.1998.1030117.x

    CAS  Google Scholar 

  • Jia Y, Tang S, Wang R, Ju X, Ding Y, Tu S, Smith DL (2010) Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium multiflorum and Lolium perenne under Cd stress. J Hazard Mater 180:384–394

    CAS  PubMed  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Review: role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207. doi:10.1631/jzus.2007.B0192

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kägi JHR (1993) Evolution, structure and chemical activity of class I metallothioneins: an overview. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III: biological roles and medical implications. Birkhäuser, Basel

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364. doi:10.1016/j.jtemb.2005.02.006

    CAS  PubMed  Google Scholar 

  • Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root-soil interface. Implications in phytoremediation. Environ Exp Bot 67:243–259. doi:10.1016/j.envexpbot.2009.06.013

    CAS  Google Scholar 

  • Kim S, Kang H (2011) Effects of elevated CO2 and Pb on phytoextraction and enzyme activity. Water Air Soil Pollut 219:365–375. doi:10.1007/s11270-010-0713-5

    CAS  Google Scholar 

  • Kummerová M, Zezulka Š, Babulab P, Váňová L (2013) Root response in Pisum sativum and Zea mays under fluoranthene stress: morphological and anatomical traits. Chemosphere 90:665–673. doi:10.1016/j.chemosphere.2012.09.047

    PubMed  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn. Springer, Berlin

    Google Scholar 

  • Larios R, Fernández-Martínez R, LeHecho I, Rucandio I (2012) A methodological approach to evaluate arsenic speciation and bioaccumulation in different plant species from two highly polluted mining areas. Sci Total Environ 414:600–607. doi:10.1016/j.scitotenv.2011.09.051

    CAS  PubMed  Google Scholar 

  • Larsen EH, Hansen M, Gossler W (1998) Speciation and health risk considerations of arsenic in the edible mushroom Laccaria amethystina collected from contaminated and uncontaminated locations. Appl Organomet Chem 12:285–291. doi:10.1002/(SICI)1099-0739(199804)12:4<285::AID-AOC706>3.0.CO;2-#

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metal: a review of biological mechanisms. J Environ Qual 31:109–120. doi:10.2134/jeq2002.1090

    CAS  PubMed  Google Scholar 

  • Lasota W, Młodecki H, Włodarczyk Z (1968) Zawartość lizyny “dostępnej” w niektórych grzybach. Roczn PZH 19:459–462

    CAS  Google Scholar 

  • Lasota W, Florczak J, Sylwestrzak J (1980) Zawartość i skład “grzybnika” w niektórych gatunkach grzybów wielkoowocnikowych. Bromatol Chem Toksyk 13:411–414

    Google Scholar 

  • Le X-C, Cullen WR, Reimer KJ (1994) Effect of cysteine on the speciation of arsenic by using hydride generation atomic absorption spectrometry. Anal Chim Acta 285:277–285. doi:10.1016/j.talanta.2011.11.068

    CAS  Google Scholar 

  • Lee BR, Kim KY, Jung WJ, Avice JC, Ourry A, Kim TH (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 6:1271–1279. doi:10.1093/jxb/erl280

    Google Scholar 

  • Leszczyszyn OI, Schmid R, Blindauer CA (2007) Toward a property/function relationship for metallothioneins: histidine coordination and unusual cluster composition in a zinc-metallothionein from plants. Proteins 68:922–935. doi:10.1002/prot.21463

    CAS  PubMed  Google Scholar 

  • Levy BD, Barbarick KA, Siemer EG, Sommers LE (1992) Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. J Environ Qual 21:185–195. doi:10.2134/jeq1992.00472425002100020006x

    CAS  Google Scholar 

  • Li NY, Fu QL, Zhuang P, Guo B, Zou B, Li ZA (2012a) Effect of fertilizers on Cd uptake of Amaranthus hypochondriacus, a high biomass, fast growing and easily cultivated potential Cd hyperaccumulator. Int J Phytoremediation 14:162–173. doi:10.1080/15226514.2011.587479

    PubMed  Google Scholar 

  • Li Y, Zhang Q, Wang R, Gou X, Wabg H, Wang S (2012b) Temperature changes the dynamics of trace element accumulation in Solanum tuberosum L. Clim Change 112:655–672. doi:10.1007/s10584-011-0251-1

    CAS  Google Scholar 

  • Li T, Liang C, Han X, Yang X (2013) Mobilization of cadmium by dissolved organic matter in the rhizosphere of hyperaccumulator Sedum alfredii. Chemosphere 91:970–976. doi:10.1016/j.chemosphere.2013.01.100

    PubMed  Google Scholar 

  • Liang CC, Li T, Xiao YP, Liu MJ, Zhang HB, Zhao ZW (2009) Effects of inoculation with arbuscular mycorrhizal fungi on maize grown in multi-metal contaminated soils. Int J Phytoremediation 11:692–703. doi:10.1080/15226510902787310

    CAS  PubMed  Google Scholar 

  • Liphadzi MS, Kirkham MB, Paulsen GM (2010) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 27:695–704. doi:10.1080/09593332708618683

    Google Scholar 

  • Londesborough S, Mattusch J, Wennrich R (1999) Separation of organic arsenic species by HPLC-ICP-MS. Fresenius J Anal Chem 363:577–581. doi:10.1007/s002160051251

    CAS  Google Scholar 

  • Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220. doi:10.1631/jzus.B0710633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Magdziak Z, Kozlowska M, Kaczmarek Z, Mleczek M, Chadzinikolau T, Drzewiecka K, Golinski P (2011) Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere. Ecotoxicol Environ Saf 74:33–40. doi:10.1016/j.ecoenv.2010.09.003

    CAS  PubMed  Google Scholar 

  • Magdziak Z, Mleczek M, Kaczmarek Z, Golinski P (2012) Influence of Ca/Mg ratio and Cd2+ and Pb2+ elements on low molecular weight organic acid secretion by Salix viminalis L. roots into the rhizosphere. Trees. doi:10.1007/s00468-012-0821-5

    Google Scholar 

  • Maggio A, Reddy MP, Joly RJ (2000) Leaf gas exchange and soluble accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ Exp Bot 44:31–38. doi:10.1016/S0098-8472(00)00051-4

    CAS  PubMed  Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854. doi:10.1007/s11356-009-0224-3

    CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332. doi:10.1016/j.envres.2007.09.004

    CAS  PubMed  Google Scholar 

  • Martínez CE, Motto HL (2000) Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107:153–158. doi:10.1016/S0269-7491(99)00111-6

    PubMed  Google Scholar 

  • Mench M, Bes C (2009) Assessment of ecotoxicity of topsoils from a wood treatment site. Pedosphere 19:143–155. doi:10.1016/S1002-0160(09)60104-1

    CAS  Google Scholar 

  • Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Goliński P, Szentner K, Strażyńska K, Stachowiak A (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34:1410–1418. doi:10.1016/j.biombioe.2010.04.012

    CAS  Google Scholar 

  • Niedzielski P, Mleczek M, Magdziak Z, Siwulski M, Kozak L (2013) Selected arsenic species: As(III), As(V) and dimethylarsenic acid (DMAA) in Xerocomus badius fruiting bodies. Food Chem 141:3571–3577. doi:10.1016/j.foodchem.2013.06.103

    CAS  PubMed  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology, 4th edn. Academic/Elsevier, San Diego, CA

    Google Scholar 

  • Norvell WA, Wu J, Hopkins DG, Welch RM (2000) Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci Soc Am J 64:2164–2168. doi:10.2136/sssaj2000.6462162x

    Google Scholar 

  • Ojegba VJ, Fasidi EO (2007) Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 27:349–355. doi:10.1007/s10669-007-9047-2

    Google Scholar 

  • Otte ML (1990) Contamination of coastal wetlands with heavy metals: factors affecting uptake of heavy metals by salt marsh plants. In: Rozema J, Verkleij JAC (eds) Ecological responses to environmental stresses. Tasks for vegetation science, vol 22. Kluwer, Dordrecht, pp 126–135. doi:10.1007/978-94-009-0599-3_12

    Google Scholar 

  • Pandey S, Gupta K, Mukherjee AK (2007) Impact of cadmium and lead on Catharanthus roseus – a phytoremediation study. J Environ Biol 28:655–662. http://www.jeb.co.in/journal_issues/200707_jul07/paper_22.pdf

  • Park S-Y, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow T-F, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu J-K, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071. doi:10.1126/science.1173041

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peuke H, Rennenberg H (2005) Phytoremediation. EMBO Rep 6:497–501. doi:10.1038/sj.embor.7400445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qaderi MM, Reid DM (2009) Crop responses to elevated carbon dioxide and temperature. In: Singh SN (ed) Climate change and crops. Springer, Berlin. doi:10.1007/978-3-540-88246-61

    Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2012) Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environ Exp Bot 75:107–113. doi:10.1016/j.envexpbot.2011.09.003

    CAS  Google Scholar 

  • Rabęda I, Woźny A, Krzesłowska M (2011) Bacteria and mycorrhizal fungi enhance plants’ efficiency in trace metal phytoremediation of trace metals contaminated areas. Kosmos, Problemy nauk biologicznych 60:423–433. http://kosmos.icm.edu.pl/PDF/2011/423.pdf

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiol 109:1141–1149. http://www.plantphysiol.org/content/109/4/1141.full.pdf

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48. http://www.ncbi.nlm.nih.gov/pubmed/10505666

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from a mining area of central Europe. Environ Pollut A 31:277–287. doi:10.1016/0143-1471(83)90064-8

    CAS  Google Scholar 

  • Reid CP, Szaniszlo PJ, Crowley DE (1986) Siderophore Involvement in Plant Iron Nutrition. In: Swinburne TR (ed) Iron siderophores and plant diseases. Plenum, New York

    Google Scholar 

  • Rieuwerts JS, Thornton I, Farago ME, Ashmore MR (1998) Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chem Spec Bioavailab 10:61–75. doi:10.3184/095422998782775835

    CAS  Google Scholar 

  • Ruiz E, Alonso-Azcárate J, Rodríguez L (2011) Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Environ Pollut 159:722–728. doi:10.1016/j.envpol.2010.11.032

    CAS  PubMed  Google Scholar 

  • Saier MH Jr, Trevors JT (2010) Phytoremediation. Water Air Soil Pollut 205(Suppl 1):S61–S63. doi:10.1007/s11270-008-9673-4

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–475. http://www.ncbi.nlm.nih.gov/pubmed/9634787

  • Schulze ED, Beck E, Muller-Hohenstein K (2005) Environment as stress factor: stress physiology of plants. Springer, Berlin

    Google Scholar 

  • Seagraves MP, Riedell WE, Lundgren JG (2011) Oviposition preference for water-stressed plants in Orius insidiosus (Hemiptera: Anthocoridae). J Insect Behav 24:132–143. doi:10.1007/s10905-010-9242-8

    Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62. doi:10.1007/s12229-011-9092-x

    Google Scholar 

  • Shen W-b, Yang H-q (2008) Effects of earthworm and microbe on soil nutrients and heavy metals. Agric Sci China 7:599–605. doi:10.1016/S1671-2927(08)60058-9

    Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214. doi:10.1080/10643380902718418

    Google Scholar 

  • Shiowatana J, McLaren RG, Chanmekha N, Samphao A (2001) Fractionation of arsenic in soil by a continuous-flow sequential extraction method. J Environ Qual 30:1940–1949. doi:10.2134/jeq2001.1940

    CAS  PubMed  Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworm impact metal mobility and availability in soil – a review. Environ Pollut 157:1981–1989. doi:10.1016/j.envpol.2009.02.029

    CAS  PubMed  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58. doi:10.1111/j.1469-8137.1993.tb03863.x

    CAS  Google Scholar 

  • Smith LA, Means JL, Chen A, Alleman B, Chapman CC, Tixier JS et al (1995) Remedial options for metals-contaminated sites. Lewis, Boca Raton, FL

    Google Scholar 

  • Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540

    CAS  PubMed  Google Scholar 

  • Spurgeon DJ, Weeks JM, Van Gestel CAM (2003) A summary of eleven years progress in earthworm ecotoxicology: the 7th international symposium on earthworm ecology, Cardiff, Wales, 2002. Pedobiologia 47:588–606. doi:10.1078/0031-4056-00234

    Google Scholar 

  • Subramanian KS, Charest C (1995) Influence of arbuscular mycorrhizae on the metabolism of maize under drought stress. Mycorrhiza 5:273–278. doi:10.1007/BF00204961

    Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161

    Google Scholar 

  • Tausz M, Šircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot 55:1955–1962. doi:10.1093/jxb/erh194

    CAS  PubMed  Google Scholar 

  • Tennant T, Wu L (2000) Effects of water stress on selenium accumulation in tall fescue (Festuca arundinacea Schreb) from a selenium-contaminated soil. Arch Environ Contam Toxicol 38:32–39. doi:10.1007/s002449910004

    CAS  PubMed  Google Scholar 

  • Thangavel P, Subbhuraam C (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proc Indian Natl Sci Acad Part B 70:109–130

    CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microb 37:1016–1024

    CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0

    CAS  Google Scholar 

  • van Gestel CA (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406:385–395. doi:10.1016/j.scitotenv.2008.05.050

    PubMed  Google Scholar 

  • Vaněk A, Komárek M, Chrastný V, Galušková I, Mihaljevič M, Šebek O, Drahota P, Tejnecký V, Vokurková P (2012) Effect of low-molecular-weight organic acids on the leaching of thallium and accompanying cations from soil – a model rhizosphere solution approach. J Geochem Explor 112:212–217. doi:10.1016/j.gexplo.2011.08.010

    Google Scholar 

  • Vithanage M, Dabrowska BB, Mukherjee AB, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10:217–224. doi:10.1007/s10311-011-0349-8

    CAS  Google Scholar 

  • Wahla IH, Kirkham MB (2008) Heavy metal displacement in salt-water-irrigated soil during phytoremediation. Environ Pollut 155:271–283. doi:10.1016/j.envpol.2007.11.020

    CAS  PubMed  Google Scholar 

  • Wang W (1994) Rice seed toxicity tests for organic and inorganic substances. Environ Monit Assess 29:101–107. doi:10.1007/BF00546869

    CAS  PubMed  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585. doi:10.1111/j.1365-3040.1993.tb00906.x

    CAS  Google Scholar 

  • Weggler K, McLaughlin MJ, Graham RD (2004) Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium. J Environ Qual 33:496–504. doi:10.2134/jeq2004.4960

    CAS  PubMed  Google Scholar 

  • Wu Q, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425. doi:10.1016/j.jplph.2005.04.024

    CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Review article heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network ISRN Ecology, Article ID 402647, 20 pages. doi:10.5402/2011/402647

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34. doi:10.1007/s11270-008-9788-7

    CAS  Google Scholar 

  • Zencich SJ, Froend RH, Turner JV, Gailitis V (2002) Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer. Oecologia 131:8–19. doi:10.1007/s00442-001-0855-7

    Google Scholar 

  • Zheng J, Wang H, Li Y, Tang S, Chen Z (2008) Using elevated carbon dioxide to enhance copper accumulation in Pteridium Revolutum, a copper-tolerant plant, under experimental conditions. Int J Phytoremediation 10:161–172. doi:10.1080/15226510801913934

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support for this chapter by project grants N R12 0065 10, from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Mleczek Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Magdziak, Z., Gąsecka, M., Goliński, P., Mleczek, M. (2015). Phytoremediation and Environmental Factors. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_4

Download citation

Publish with us

Policies and ethics