Skip to main content

The Bioavailability Processes as a Key to Evaluate Phytoremediation Efficiency

  • Chapter
  • First Online:
Phytoremediation

Abstract

Bioavailability is the key to understanding the risks from pollution and to defining remediation strategies, since organisms only respond to the fraction that is biologically available. Plants are able to uptake the substances only if present in available forms in the soil environment; this means that bioavailability is the key to evaluating the feasibility of phytoextraction as a remediation technology.

In soil, the bioavailable fractions of contaminants are dependent on soil properties and processes. Soil characteristics are often not fully considered in the technology evaluation; however, the ability of the same plants to uptake metals is quite different in soils with different properties that determine metal bioavailability.

Two case studies show how it is possible to increase the efficiency of phytoextraction by manipulating the bioavailability. In the first case, the addition of various additives to a very acid soil reduced the toxic effects arising from a too high bioavailability of the metals, thus enabling the plants to grow. In the second case, the addition of a single fertilizer simultaneously increased the bioavailability of arsenic and mercury, thus promoting a greater plant uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah S, Sarem SM (2010) The potential of Chrysanthemum and Pelargonium for phytoextraction of lead-contaminated soils. J Civ Eng 4:409–416

    Google Scholar 

  • Alexander AM (2000) Bioavailability and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Almansoory AF, Idris M, Abdullah SRS, Anuar N (2013) Propagation and phytoremediation preliminary test of Ludwigia ectovolvis (L.) and Scirpus mucronatus (L.) in gasoline contaminated Soil. Res J Environ Toxicol 7:29–37

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Barbafieri M, Tassi E (2010) Plant growth regulators for phytoremediation technologies. In: 20th international conference on plant growth substances (IPGSA), Tarragona, Spain

    Google Scholar 

  • Barbosa-Jefferson VL, Zhao FJ, McGrath SP, Magan N (1998) Thiosulphate and tetrathionate oxidation in arable soils. Soil Biol Biochem 30:553–559

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CP, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB, New York

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffrè T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Cao A, Crucci A, Lai T, La Colla P, Tamburini E (2007) Effect of biodegradable chelating agents on heavy metals phytoextraction with Mirabilis jalapa and on its associated bacteria. Eur J Soil Biol 43:200–206

    Article  CAS  Google Scholar 

  • Cassina L, Tassi E, Pedron F, Petruzzelli G, Ambrosini P, Barbafieri M (2012) Using plant hormone and thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant. J Hazard Mater 231(232):36–42

    Article  PubMed  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyper accumulator plants to phytoextract soil Ni and Cd. Z Naturforsch C 60:190–198

    CAS  PubMed  Google Scholar 

  • Cherlatchka R, Cambier P (2000) Influence of reducing conditions on solubility of trace metals in contaminated soils. Water Air Soil Pollut 118:143–167

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Doumett S, Fibbi D, Azzarello E, Mancuso S, Mugnai S, Petruzzelli G, Del Bubba M (2011) Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation study. Int J Phytoremediation 13:1–17

    Article  CAS  PubMed  Google Scholar 

  • Duan G, Liu W, Xueping Chen X, Ying Hu Y, Zhu Y (2013) Association of arsenic with nutrient elements in rice plants. Metallomics 5:784–792

    Article  CAS  PubMed  Google Scholar 

  • Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    Article  CAS  PubMed  Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes e options and impossibilities. Chem Erde 65:29–42

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with Nicotiana tabacum. Chemosphere 63:996–1004

    Article  CAS  PubMed  Google Scholar 

  • Evangelou MWH, Ebel M, Hommes G, Schaeffer A (2008) Biodegradation: the reason for the inefficiency of small organic acids in chelant-assisted phytoextraction. Water Air Soil Pollut 195:177–188

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere- plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  PubMed  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Kollensperger G, MaL Q, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    Article  CAS  PubMed  Google Scholar 

  • Ghaderian SM, Mohtadi A, Rahiminejad R, Reeves RD, Baker AJM (2007) Hyperaccumulation of nickel by two Alyssum species from the serpentine soils of Iran. Plant Soil 293:91–97

    Article  CAS  Google Scholar 

  • Giansoldati V, Tassi E, Morelli E, Gabellieri E, Pedron F, Barbafieri M (2012) Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress. Chemosphere 87:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta DK, Srivastava A, Singh VP (2008) EDTA enhances lead uptake and facilitates phytoremediation by vetiver grass. J Environ Biol 29:903–906

    CAS  PubMed  Google Scholar 

  • Hamon RE, McLaughlin MJ (1999) Use of the hyperaccumulator Thlaspi caerulescens for bioavailable contaminant stripping. In: Wenzel WW, Adriano DC, Alloway B, Doner H, Keller C, Lepp NW, Mench M, Naidu R, Pierzynski GM (eds) Proceedings 5th international conference on the biogeochemistry of trace elements

    Google Scholar 

  • Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Henry HF, Burken JG, Maier RM, Newman LA, Rock S, Schnoor L, Suck WA (2012) Phytotechnologies – preventing exposures improving public health. Int J Phytoremediation 15:889–899

    Article  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koopmans GF, Romkens PFAM, Song J, Temminghoff EJM, Japenga J (2007) Predicting the phytoextraction duration to remediate heavy metal contaminated soils. Water Air Soil Pollut 181:355–371

    Article  CAS  Google Scholar 

  • Kozdroj J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417

    Article  CAS  Google Scholar 

  • Lehto NJ, Davison W, Zhang H, Tych W (2006) Theoretical comparison of how soil processes affect uptake of metals by diffusive gradients in thin films and plants. J Environ Qual 5:1903–1913

    Article  Google Scholar 

  • Li YM, Chaney R, Brewer E et al (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Lin H, Shi J, Wu B, Yang J, Chen Y, Zhao Y, Hu T (2010) Speciation and bio-chemical transformations of sulfur and copper in rice rhizosphere and bulk soil-XANES evidence of sulfur and copper associations. Plant Soil 313:1–17

    Google Scholar 

  • Lucas García JA, Grijalbo L, Ramos B, Fernández-Piñas F, Rodea-Palomares I, Gutierrez-Mañero FJ (2013) Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere 90:2654–2661

    Article  PubMed  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513

    Article  CAS  PubMed  Google Scholar 

  • Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Società Toscana Scienze Naturali 55:49–74

    CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2004) Phytoremediation of mercury-contaminated mine tailings by induced plant-mercury accumulation. Environ Pract 6:165–175

    Article  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol 166:445–454

    Article  CAS  PubMed  Google Scholar 

  • Myneni SCB, Traina SJ, Waychunas GA, Logan TJ (1998) Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim Cosmochim Acta 62:3499–3514

    Article  CAS  Google Scholar 

  • Nowack B, Schulin R, Robinson BH (2006) A critical assessment of chelant-enhanced metal phytoextraction. Environ Sci Technol 40:5225–5232

    Article  CAS  PubMed  Google Scholar 

  • NRC National Research Council (2002) Bioavailability of contaminants in soils and sediments: processes, tools and applications. National Academies, Washington, DC

    Google Scholar 

  • Panich-Pat T, Pokethitiyook P, Kruatrachue M, Upatham ES, Srinives P, Lanza GR (2004) Removal of lead from contaminated soils by Typha angustifolia. Water Air Soil Pollut 155:159–171

    Article  CAS  Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75:808–814

    Article  CAS  PubMed  Google Scholar 

  • Pedron F, Petruzzelli G, Tassi E, Brignocchi S, Barbafieri M (2010) Simultaneous Pb and As assisted-phytoextraction from a contaminated Industrial soil theme. In: Conference on ConSoil, Vienna, vol 1, p 8

    Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E, Ambrosini P, Patata L (2011) Mercury mobilization in a contaminated industrial soil for phytoremediation. Commun Soil Sci Plant Anal 42:2767–2777

    Article  CAS  Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2013) Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping. Pedosphere 23:104–111

    Article  Google Scholar 

  • Peijnenburg WJGM, Jager T (2003) Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicol Environ Saf 56:63–77

    Article  CAS  PubMed  Google Scholar 

  • Petruzzelli G, Pedron F (2006) “Bioavailability” at heavy metal contaminated sites: a tool to select remediation strategies. In: International conference on remediation of contaminated sites, Rome

    Google Scholar 

  • Petruzzelli G, Pezzarossa B (2003) Ionic strength influence on heavy metal sorption processes by soil. J Phys IV 107:1061–1064

    CAS  Google Scholar 

  • Petruzzelli G, Pedron F, Gorini F, Pezzarossa B, Tassi E, Barbafieri M (2011) Bioavailability to evaluate phytoextraction applicability. Water Air 42:12–17 (in Italian)

    Google Scholar 

  • Petruzzelli G, Pedron F, Barbafieri M, Tassi E, Gorini F, Rosellini I (2012) Enhanced bioavailable contaminant stripping: a case study of Hg contaminated soil. Chem Eng Trans 28:211–216

    Google Scholar 

  • Pezzarossa B, Petruzzelli G, Grifoni M, Rosellini I, Malagoli M, Schiavon M (2013) Effects of phosphate and thiosulphate on arsenic accumulation in Brassica juncea plants grown in soil and in hydroponic culture. Geophys Res EGU Abstr 15:7763

    Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council) (2009) Phytotechnology technical and regulatory guidance and decision trees, revised. PHYTO-3. Intestate Technology & Regulatory Council, Phytotechnologies Team, Washington, DC, Tech Reg Update. www.itrcweb.org

  • Robinson B, Fernandez JE, Madejon P, Marañon T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    Article  CAS  Google Scholar 

  • Robinson BH, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T (2006) Phytoremediation for the management of metal flux in contaminated sites. Forest Snow Landsc Res 80:221–234

    Google Scholar 

  • Santos FS, Hernandez-Allica J, Becerril JM, Amaral-Sobrinho N, MazurN GC (2006) Chelate induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65:43–50

    Article  CAS  PubMed  Google Scholar 

  • Seth CS, Misra V, Singh RR, Zolla L (2011) EDTA-enhanced lead phytoremediation in sunflower (Helianthus annuus L.) hydroponic culture. Plant Soil 347:231–242

    Article  CAS  Google Scholar 

  • Shelmerdine PA, Black CR, McGrath SP, Young SD (2009) Modeling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environ Pollut 157:1589–1596

    Article  CAS  PubMed  Google Scholar 

  • Sparks DL (1998) Methods of soil analysis, Part 3. Chemical methods, Soil Science Society of America Book Series. Soil Science Society of America, Madison, WI

    Google Scholar 

  • Tassi E, Pedron F, Barbafieri M, Petruzzelli G (2004) Phosphate-assisted phytoextraction in As-contaminated soil. Eng Life Sci 4:341–346

    Article  CAS  Google Scholar 

  • USEPA (1998) SW-846 method 7473. Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. U.S. EPA, Washington, DC

    Google Scholar 

  • USEPA (2008) Green remediation: incorporating sustainable environmental practice into remediation of contaminated sites. EPA542-R08-002:1–42

    Google Scholar 

  • van Gestel CAM (2008) Physico-chemical and biological parameters determine metal bioavailability in soils. Sci Total Environ 406:385–395

    Article  PubMed  Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  PubMed  Google Scholar 

  • Vetterlein D, Szegedi K, Ackermann J, Mattusch J, Neue HU, Tanneberg H, Jahn R (2007) Competitive of phosphate and arsenate associated with geothite by root activity. J Environ Qual 36:1811–1820

    Article  CAS  PubMed  Google Scholar 

  • Wanga Q, Li Z, Cheng S, Wua Z (2010) Effects of humic acids on phytoextraction of Cu and Cd from sediment by Elodea nuttallii. Chemosphere 78:604–608

    Article  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant assisted bioremediation (phytoremediation). Plant Soil 408:321–385

    Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianniantonio Petruzzelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Petruzzelli, G., Pedron, F., Rosellini, I., Barbafieri, M. (2015). The Bioavailability Processes as a Key to Evaluate Phytoremediation Efficiency. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_3

Download citation

Publish with us

Policies and ethics