Skip to main content

Salt Marsh Plants’ Potential for the Remediation of Hydrocarbon-Contaminated Environments

  • Chapter
  • First Online:

Abstract

Petroleum contamination can cause serious damage to ecosystems, and natural biological processes may be convenient alternatives to minimise ecological impacts. However, these are long processes, and approaches to accelerate them are needed. In this chapter two studies carried out to ascertain the phytoremediation potential of salt marsh plants for the remediation of hydrocarbon-contaminated environments in near-natural controlled conditions are reported. In the first study, the suitability of Juncus maritimus and Phragmites australis for rhizodegradation of petroleum hydrocarbon-contaminated estuarine sediment, the medium where the plants grow, was assessed. The second study involved soil contaminated with petrochemical products and evaluated the capability of Halimione portulacoides, Juncus maritimus and Scirpus maritimus for soil remediation. Results indicate that salt marsh plants, or salt-tolerant marsh plants, can have an important role in the restoration and remediation of not only hydrocarbon-contaminated sediments but also hydrocarbon-contaminated nonsaline soils. However, the specificities of the plant species, the environmental conditions and the time frame should be well thought out when engaging a revegetation of hydrocarbon-polluted sites with these plants.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam P (2002) Salt marshes in a time of change. Environ Conserv 29:39–61

    Article  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Bioresour Technol 79:273–276

    Article  CAS  PubMed  Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbons treatment in soil. Chemosphere 20:253–265

    Article  CAS  Google Scholar 

  • Banks M, Schwab P, Liu B, Kulakow P, Smith J, Kim R (2003) The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment. Adv Biochem Eng Biotechnol 78:75–96

    CAS  PubMed  Google Scholar 

  • Burns KA, Codi S, Swannell RJP, Duke NC (1999) Assessing the petroleum hydrocarbon potential of endogenous tropical marine wetland microorganisms: flask experiments. Mangroves Salt Marshes 3:67–83

    Article  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta SK, Joner E (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Couto MNPFS, Basto MCRP, Vasconcelos MTSD (2011) Suitability of different salt marsh plants for petroleum hydrocarbons remediation. Chemosphere 84:1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Couto MNPFS, Basto MCRP, Vasconcelos MTSD (2012) Suitability of Scirpus maritimus for petroleum hydrocarbons remediation in a refinery environment. Environ Sci Pollut Res 19:86–95

    Article  CAS  Google Scholar 

  • Couto MNPFS, Borges JR, Guedes P, Almeida R, Monteiro E, Almeida CM, Basto MCRP, Vasconcelos MTSD (2014) An improved method for determination of petroleum hydrocarbons from soil using a simple ultrasonic extraction and Fourier transform infrared spectrophotometry. Pet Sci Technol. doi:10.1080/10916466.2011.587383

  • Delille D, Coulon F, Pelletier E (2004) Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils. Cold Reg Sci Technol 40:61–70

    Article  Google Scholar 

  • Dowling DN, Doty SL (2009) Improving phytoremediation through biotechnology. Curr Opin Biotechnol 20:204–206

    Article  CAS  PubMed  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  PubMed  Google Scholar 

  • Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance Canada, Calgary, Canada

    Google Scholar 

  • Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Hosakawa R, Nagai M, Morikawa M, Okuyama H (2009) Autochthonous bioaugmentation and its possible application to oil spills. World J Microbiol Biotechnol 25:1519–1528

    Article  Google Scholar 

  • Huang X-D, El-Alawi Y, Gurska J, Glick BR, Greenberg BMA (2005) Multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Kaksonen AH, Jussila MM, Lindström K, Suominen L (2006) Rhizosphere effect of Galega orientalis in oil-contaminated soil. Soil Biol Biochem 38:817–827

    Article  CAS  Google Scholar 

  • Kennish MJ (2001) Coastal salt marsh systems in the U.S. A review of anthropenic impacts. J Coast Res 17:731–748

    Google Scholar 

  • Lee S-H, Lee W-S, Lee C-H, Kim J-G (2008) Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. J Hazard Mater 153:892–898

    Article  CAS  PubMed  Google Scholar 

  • Lima I, Moreira SM, Osten JR, Soares AM, Guilhermino L (2007) Biochemical responses of the marine mussel Mytilus galloprovincialis to petrochemical environmental contamination along the North-western coast of Portugal. Chemosphere 66:1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Lin Q, Mendelssohn I (2008) Determining tolerance limits for restoration and phytoremediation with Spartina patens in crude oil-contaminated sediment in greenhouse. Arch Agronomy Soil Sci 54:681–690

    Article  CAS  Google Scholar 

  • Lin Q, Mendelssohn IA (2009) Potential of restoration and phytoremediation with Juncus roemerianus for diesel-contaminated coastal wetlands. Ecol Eng 35:85–91

    Article  Google Scholar 

  • Liste HH, Felgentreu D (2006) Crop growth, culturable bacteria, and degradation of petrol hydrocarbons (PHCs) in a long-term contaminated field soil. Appl SoIl Ecol 31:43–52

    Article  Google Scholar 

  • Madsen R, Kristensen P (1997) Effects of bacterial inoculation and nonionic surfactants on degradation of polycyclic aromatic hydrocarbons in soil. Environ Toxicol Chem 16:631–637

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  CAS  Google Scholar 

  • Merkl N, Schultze-Kraft R, Arias M (2006) Effect of the tropical grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf on microbial population and activity in petroleum-contaminated soil. Microbiol Res 161:80–91

    Article  CAS  PubMed  Google Scholar 

  • Mills MA, Bonner JS, McDonald TJ, Page CA, Autenrieth RL (2003) Intrinsic bioremediation of a petroleum-impacted wetland. Mar Poll Bullet 46:887–899

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  PubMed  Google Scholar 

  • Nikolopoulou M, Kalogerakis N (2009) Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons. J Chem Technol Biotechnol 84:802–807

    Article  CAS  Google Scholar 

  • Olson PE, Reardon KF, Pilon-Smits EAH (2003) Ecology of rhizosphere bioremediation. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation transformation and control of contaminants. Wiley, New York, pp 317–353

    Google Scholar 

  • Ribeiro H, Mucha AP, Almeida CMR, Bordalo AA (2011) Hydrocarbon degradation potential of salt marsh plant-microorganisms associations. Biodegradation 22:729–739

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro H, Mucha AP, Almeida CMR, Bordalo AA (2013a) Influence of different salt marsh plants on hydrocarbon degrading microorganisms abundance throughout a phenological cycle. Int J Phytoremediation 15:715–728

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro H, Mucha AP, Almeida CMR, Bordalo AA (2013b) Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Sci Total Environ 458–460:568–576

    Article  PubMed  Google Scholar 

  • Saari E, Peramaki P, Jalonen J (2007) A comparative study of solvent extraction of total petroleum hydrocarbons in soil. Microchim Acta 158:261–268

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  PubMed  Google Scholar 

  • Tesar M, Reichenauer T, Sessitsch A (2002) Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol Biochem 34:1883–1892

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Yateem A, Al-Sharrah T, Bin-Haji A (2007) Investigation of microbes in the rhizosphere of selected grasses of rhizoremediation of hydrocarbon contaminated soils. Soil Sediment Contam 16:269–280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

 To FEDER funds through Programa Operacional Factores de Competitividade – COMPETE and to Portuguese Foundation for Science and Technology (FCT, Portugal) under PesT-C/MAR/LA0015/2011, PTDC/MAR/099140/2008 and REEQ/304/QUI/2005 and PhD scholarships of HR (SFRH/BD/47631/2008) and NC (SFRH/31816/2006) cofinanced by POPH/FSE. To Refinaria do Porto (GALP Energia) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marisa R. Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Almeida, C.M.R. et al. (2015). Salt Marsh Plants’ Potential for the Remediation of Hydrocarbon-Contaminated Environments. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_23

Download citation

Publish with us

Policies and ethics