Skip to main content

Phytoremediation of PAH-Contaminated Areas

  • Chapter
  • First Online:
Phytoremediation

Abstract

The polycyclic aromatic hydrocarbons (PAHs) include more than 200 compounds with two or more fused benzene rings, and 16 of them are particularly dangerous. PAHs present in the environment originate mainly from anthropogenic sources and undergo continuous changes, both biological (bioaccumulation and biodegradation) and without the presence of microorganisms (volatilization, leaching, sorption, photodegradation, chemical oxidation, and reactions with other compounds). PAH concentration in soils results from their accumulation in the soil and continuously occurring degradation. It was documented that plants have the ability to metabolize the benzene ring by detaching carbon, if hydrocarbons are available to plant roots, and they migrate through the stem. The efficiency of biodegradation is also correlated with the solubility of PAHs in water. High efficiency of removal of studied compounds (from 30 to more than 90 %) was achieved for, e.g., Festuca rubra, Lolium, Dactylis glomerata, Scirpus lacustris, and Typha spp. High efficiency in the cleanup of soil contaminated with PAHs was also achieved using white rot fungi such as Pleurotus ostreatus, Pleurotus eryngii, Ganoderma lucidum, Lentinula edodes, Fomitopsis palustris, Irpex lacteus, Phanerochaete sordida, and Bjerkandera adusta or compost from edible white rot fungi such as Pleurotus ostreatus, Lentinula edodes, and other Basidiomycota—phase II mushroom compost or colonized mushroom substrate (substrate before fruiting). The use of numerous species (e.g., Pinus sylvestris L., Pinus pinea L., Pinus pinaster Ait., Pinus brutia Ten., Pinus massoniana Lamb., Pinus nigra Arn., Pinus strobus L.) also allows monitoring of lower troposphere pollution with PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arun A, Prevee Raja P, Arthi R, Ananthi M, Sathish Kumar K, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by Basidiomycetes fungi, Pseudomonas isolate and their cocultures: comparative in vivo and silico approach. Appl Biochem Biotechnol 151:132–142. doi:10.1007/s12010-008-8160-0

    CAS  PubMed  Google Scholar 

  • Augusto S, Máguas C, Matos J, Pereira MJ, Branquinho C (2010) Lichens as an integrating tool for monitoring PAH atmospheric deposition: A comparison with soil, air and pine needles. Environ Pollut 158:483–489. doi:10.1016/j.envpol.2009.08.016

    CAS  PubMed  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzyme Microb Technol 32:78–91. doi:10.1016/S0141-0229(02)00245-4

    CAS  Google Scholar 

  • Baran S, Bielińska EJ, Oleszczuk P, Baranowska E (2003) Activity of dehydrogenases as indicator of changes of PAH concentrations in soil amended with sewage. Arch Environ Prot 29(4):97–105 (in Polish)

    CAS  Google Scholar 

  • Baran S, Bielińska J, Oleszczuk P (2004) Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118:221–232. doi:10.1016/S0016-7061(03)00205-2

    CAS  Google Scholar 

  • Barr DP, Aust SD (1994) Mechanisms white rot fungi use to degrade pollutants. Crit Rev Environ Sci Technol 28:78–87. doi:10.1021/es00051a724

    Google Scholar 

  • Blasco M, Domeño C, Narín C (2006) Use of lichens as pollution biomonitors in remote areas: comparison of PAHs extracted from lichens and atmospheric particles sampled in and around the Somport tunnel (Pyrenees). Environ Sci Technol 40:6384–6391. doi:10.1021/es0601484

    CAS  PubMed  Google Scholar 

  • Bogan BW, Lamar RT (1995) One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 61:2631–2635

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonnarme P, Jeffries TW (1990) Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56:210–217

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brown GS, Barton LL, Thomson BM (2003) Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons. Waste Manage 23:737–740. doi:10.1016/S0956-053X(02)00119-8

    CAS  Google Scholar 

  • Bumpus JA (1989) Bioremediation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cajthmal T, Moder M, Kaceer P, Sasek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222. doi:10.1016/S0021-9673(02)00904-4

    Google Scholar 

  • Cavalieri E, Rogan E (1985) Role of radical cations in aromatic hydrocarbon carcinogenesis. Environ Health Perspect 64:69–84

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48:717–724. doi:10.1016/S0045-6535(02)00151-0

    CAS  PubMed  Google Scholar 

  • Chang BV, Chang SW, Yuan SY (2003) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in sludge. Adv Environ Res 7:623–628. doi:10.1016/S1093-0191(02)00047-3

    CAS  Google Scholar 

  • Collins PJ, Kotterman M, Field JA, Dobson A (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567

    PubMed Central  CAS  PubMed  Google Scholar 

  • Conte P, Zena A, Pilidis G, Piccolo A (2001) Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environ Pollut 112:27–31. doi:10.1016/S0269-7491(00)00101-9

    CAS  PubMed  Google Scholar 

  • Cuypers C, Grotenhuis T, Joziasse J, Rulkens W (2000) Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environ Sci Technol 34:2057–2063. doi:10.1021/es991132z

    CAS  Google Scholar 

  • De Nicola F, Lancellotti C, Prati MV, Maisto G, Alfan A (2011) Biomonitoring of PAHs by using Quercus ilex leaves: source diagnostic and toxicity assessment. Atmos Environ 45:1428–1433. doi:10.1016/j.atmosenv.2010.12.022

    Google Scholar 

  • Directive EU 86/278/EEC

    Google Scholar 

  • Doong RA (2003) Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J Hazard Mater 96(1):15–27. doi:10.1016/j.jhazmat.2011.04.019

    CAS  PubMed  Google Scholar 

  • Dugay A, Herrenknecht C, Czok M, Guyon F, Pages N (2002) New procedure for selective extraction of polycyclic aromatic hydrocarbons in plants for gas chromatographic-mass spectrometric analysis. J Chromatogr A 958:1–7. doi:10.1016/S0021-9673(02)00383-7

    CAS  PubMed  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production – Pleurotus ostreatus – for bioremediation of creosote contaminated soil. Int Biodeterior Biodegradation 44:117–126. doi:10.1016/S0964-8305(99)00073-6

    CAS  Google Scholar 

  • Enell A, Reichenberg F, Warfvinge P, Ewald G (2004) A column method for determination of leaching of polycyclic aromatic hydrocarbons from aged contaminated soil. Chemosphere 54:707–715. doi:10.1016/j.ch

    CAS  PubMed  Google Scholar 

  • Feilberg A, Nielsen T (2001) Photodegradation of nitro-PAHs in viscous organic media used as models of organic aerosols. Environ Sci Technol 35:108–113. doi:10.1021/es990834l

    CAS  PubMed  Google Scholar 

  • Field JA, de Jong E, Feijoo Costa G, de Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gana S, Laua EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. doi:10.1016/j.jhazmat.2009.07.118

    Google Scholar 

  • Gąsecka M, Drzewiecka K, Stachowiak J, Siwulski M, Goliński P, Sobieralski K, Golak I (2012) Degradation of polycyclic aromatic hydrocarbons (PAHs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes. Acta Sci Pol Hortorum 11(4):39–46

    Google Scholar 

  • Gąsecka M, Drzewiecka K, Stachowiak J, Siwulski M, Goliński P, Sobieralski K (2013) The efficient degradation of selected PAHs in soil with a substrate refuse from Pleurotus ostreatus cultivation. Fresenius Environ Bull 22(8):2651–2658

    Google Scholar 

  • Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35(17):4126–4136. doi:10.1016/S0043-1354(01)00137-3

    CAS  PubMed  Google Scholar 

  • Gomez J, Alcantara MT, Pazos M, Sanroman MA (2010) Remediation of polluted soil by a two-stage treatment system: desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent. J Hazard Mater 173:794–798. doi:10.1016/j.jhazmat.2009.08.103

    CAS  PubMed  Google Scholar 

  • Gramss G, Voigt KD, Kirshe B (1999) Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation 10:51–62. doi:10.1023/A:1008368923383

    CAS  PubMed  Google Scholar 

  • Gromiec MJ (2001) Directions of planned changes in sludge Directive in Wyd Politechniki Częstochowskiej, Czestochowa, Konferencje 42 (in Polish)

    Google Scholar 

  • Haddox DC, Cutright TJ (2003) Evaluation of two bacterial delivery systems for in-situ remediation of PAH contaminated sediments. J Soil Sediment 3(1):41–48. doi:10.1007/BF02989468

    CAS  Google Scholar 

  • Hallberg R, Trepte B (2003) Bioremediation of PAH polluted soils: column studies. J Soil Sediment 3:121–127. doi:10.1007/BF02989464

    Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    CAS  PubMed  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15. doi:10.1016/j.jhazmat.2009.03.137

    CAS  PubMed  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    CAS  Google Scholar 

  • Hwang HH, Wade TL (2008) Aerial distribution temperature-dependent seasonal variation and sources of polycyclic aromatic hydrocarbons in pine needles from the Houston metropolitan area Texas USA. J Environ Sci Health A 43:1243–1251. doi:10.1080/10934520802177771

    CAS  Google Scholar 

  • Hwang HH, Wade TL, Sericano JL (2003) Concentrations and source characterization of polycyclic aromatic hydrocarbons in pine needles from Korea, Mexico and United States. Atmos Environ 37:2259–2267. doi:10.1016/S1352-2310(03)00090-6

    CAS  Google Scholar 

  • In der Wiesche C, Martens R, Zadrazil F (2003) The effect of interaction between white-rot fungi and indigenous microorganisms on degradation of polycyclic aromatic hydrocarbons in soil. Water Air Soil Pollut 3:73–79. doi:10.1023/A:1023944527951

    CAS  Google Scholar 

  • Joshi DK, Gold MH (2000) Oxidation of dibenzo-p-dioxin by lignin peroxidase from the basidiomycete Phanerochaete chrysosporium. Biochemistry-US 33:10969–10976. doi:10.1021/bi00202a016

    Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612

    CAS  PubMed  Google Scholar 

  • Khodadoust AP, Bagchi R, Suidan MT, Brenner RC, Sellers NG (2000) Removal of PAHs from highly contaminated soils found at prior manufactured gas operations. J Hazard Mater B80:159–174. doi:10.1016/S0304-3894(00)00286-7

    Google Scholar 

  • Kishi K, Wariishi H, Marquez L, Dunford HB, Gold HM (1984) Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry 33:694–701. doi:10.1021/bi00195a010

    Google Scholar 

  • Klimiuk E, Łebkowska M (2003) Biotechnology in the environmental protection. PWN, Warszawa (in Polish)

    Google Scholar 

  • Kluska M (2004) Dynamics of sorption of PAH through soil in the neighborhood of roads of high traffic. Arch Environ Prot 30(2):83–93 (in Polish)

    CAS  Google Scholar 

  • Kluska M (2005) Polycyclic aromatic hydrocarbons uptake by selected plants in the vicinity of highway. Arch Environ Prot 1:61–70

    Google Scholar 

  • Kluska M, Kroszczyński W (2000) Contents of selected PAH in the neighborhood of roads of high traffic. Ecol Chem Eng 6:564–573 (in Polish)

    Google Scholar 

  • Korte N (1999) A Guide for the Technical Evaluation of Environmental Data. Technomic Publishing, Lancaster, CA

    Google Scholar 

  • Kramer U (2005) Phytoremediation novel approaches to clearing up polluted soils. Curr Opt Biotechnol 16:133–141. doi:10.1100/2012/173829

    Google Scholar 

  • Lang Q, Hunt F, Wai CM (2000) Supercritical fluid extraction of polycyclic aromatic hydrocarbons from pine (Pinus strobes) needles and its implications. J Environ Monit 2:639–644. doi:10.1039/B004613M

    CAS  PubMed  Google Scholar 

  • Lazzari L, Sperni L, Bertin P, Pavoni B (2000) Correlation between inorganic (heavy metals) and organic (PCBs and PAHs) micropollutant concentrations during sewage sludge composting processes. Chemosphere 41:427–435. doi:10.1016/j.envint.2008.06.009

    CAS  PubMed  Google Scholar 

  • Lehndorff E, Schwark L (2004) Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler – Part II: Polycyclic aromatic hydrocarbons (PAH). Atmos Environ 38:3793–3808. doi:10.1016/j.atmosenv.2004.03.065

    CAS  Google Scholar 

  • Levin L, Viale A, Forchiassin A (2003) Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Int Biodeterior Biodegradation 52:1–5. doi:10.1016/S0964-8305(02)00091-4

    CAS  Google Scholar 

  • Li X, Lin X, Zhang J, Wu Y, Feng Y, Wang Y (2010) Degradation of polycyclic aromatic hydrocarbons by crude extracts from spent mushroom substrate and its possible mechanisms. Curr Microbiol 60:336–342. doi:10.1007/s00284-009-9546-0

    CAS  PubMed  Google Scholar 

  • Li X, Wu Y, Lin X, Zhang J, Zeng J (2012) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil microcosms amended with mushroom cultivation substrate. Soil Biol Biochem 47:191–197. doi:10.1016/j.soilbio.2012.01.001

    CAS  Google Scholar 

  • Ling W, Zeng Y, Gao Y, Dang H, Zhu X (2010) Availability of polycyclic aromatic hydrocarbons in aging soils. J Soil Sediments 10:799–807. doi:10.2136/sssaj2012.0203

    CAS  Google Scholar 

  • Lisowska E (2010) PAH soil concentrations in the vicinity of charcoal kilns in Bieszczady. Arch Environ Prot 4:41–54

    Google Scholar 

  • Liste HH, Alexander M (2000a) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14. doi:10.1016/S0045-6535(99)00217-9

    CAS  PubMed  Google Scholar 

  • Liste HH, Alexander M (2000b) Plant promoted pyrene degradation in soil. Chemosphere 40:7–10. doi:10.1016/S0045-6535(99)00216-7

    CAS  PubMed  Google Scholar 

  • Little C, Hepher MJ, El-Sharif M (2002) The sono-degradation of phenanthrene in an aqueous environment. Ultrasonics 40:667–674. doi:10.1016/S0041-624X(02)00196-8

    CAS  PubMed  Google Scholar 

  • Machate T, Noll H, Behrens H, Kettrup A (1997) Degradation of phenanthrene and hydraulic characteristic in a constructed wetland. Water Res 3:554–560. doi:10.1016/S0043-1354(96)00260-6

    Google Scholar 

  • Maila MP, Cloete T (2002) Germination of Lepidium sativum as a method to evaluate polycyclic aromatic hydrocarbons (PAHs) removal from contaminated soil. Int Biodeterior Biodegradation 50:107–113. doi:http://hdl.handle.net/10204/1548

  • Maliszewska-Kordybach B (2003) Habitat of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ Int 28:719–728

    CAS  PubMed  Google Scholar 

  • Maliszewska-Kordybach B (2005) Dissipation of polycyclic aromatic hydrocarbons in freshly contaminated soils – the effect of soil physicochemical properties and aging. Water Air Soil Pollut 168:113–128. doi:10.1007/s11270-005-0940-3

    CAS  Google Scholar 

  • Maliszewska-Kordybach B (2009) Concentrations, sources and spatial distribution of individual polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in the Eastern part of the EU: Poland as a case study. Sci Total Environ 407:3746–3753. doi:10.1016/j.scitotenv.2009.01.010

    CAS  PubMed  Google Scholar 

  • McNally DL, Mihelcic JR, Lueking DR (1999) Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere 38(6):1313–1321. doi:10.1016/S0045-6535(98)00532-3

    CAS  Google Scholar 

  • Mechlińska A, Wolska L, Namieśnik J (2010) Isotope-labeled substances in analysis of persistent organic pollutants in environmental samples. Trends Anal Chem 29:820–831. doi:10.1016/j.trac.2010.04.011

    Google Scholar 

  • Mendez M, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environ Health Perspect 116(3):278–283. doi:10.1289/ehp.10608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mester T, Tien M (2000) Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int Biodeterior Biodegrad 46:51–59. doi:10.1016/S0964-8305(00)00071-8

    CAS  Google Scholar 

  • Moen MA, Hammel KE (1994) Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60:1956–1961

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mulder H, Breure AM, Rulkens WH (2001) Prediction of complete bioremediation periods of PAH soil pollutants in different physical states by mechanistic models. Chemosphere 43:1085–1094. doi:10.1016/S0045-6535(00)00185-5

    CAS  PubMed  Google Scholar 

  • Murakami M, Abe M, Kakumoto Y, Kawano H, Fukasawa H, Saha M, Takada H (2012) Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons. Atmos Environ 54:9–17. doi:10.1016/j.atmosenv.2012.02.014

    CAS  Google Scholar 

  • Nam JJ, Sang BH, Eom KC, Lee SH, Smith A (2003) Distribution of polycyclic aromatic hydrocarbons in agricultural soils in South Korea. Chemosphere 50:1281–1289. doi:10.1016/S0045-6535(02)00764-6

    CAS  PubMed  Google Scholar 

  • Nocentini M, Pinelli D (2001) Biodegradation of PAHs in aggregates of a low permeability soil. J Soil Sediment 102:211–226. doi:10.1080/20015891109220

    Google Scholar 

  • Northcoot GL, Jones K (2001) Partitioning, extractability and formation of nonextractable PAH residues in soil. 2. Effects on compound dissolution behavior. Environ Sci Technol 35:1111–1117. doi:10.1021/es000071y

    Google Scholar 

  • Oleszczuk P, Baran S (2004) Concentration of PAHs in plants growing on soils amended with various doses of sewage sludge. Arch Environ Prot 30(3):35–50 (in Polish)

    CAS  Google Scholar 

  • Piccardo MT, Pala M, Bonaccurso B, Stella A, Redaelle A, Paola G, Valerio F (2005) Pinus nigra and Pinus pinaster as passive samplers of polycyclic aromatic hydrocarbons. Environ Pollut 133:293–301. doi:10.1016/j.envpol.2004.05.034

    CAS  PubMed  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzyme Microb Technol 39:1242–1249. doi:10.2478/S11535-009-0075-4

    CAS  Google Scholar 

  • Rasmussen G, Olsen RA (2004) Sorption and biological removal of creosote-contaminants from groundwater I soil/sand vegetated with orchard grass (Dactylis glomerata). Adv Environ Res 8:313–327. doi:10.1016/S1093-0191(02)00105-3

    CAS  Google Scholar 

  • Ratola N, Amigo JM, Alves A (2010) Levels and sources of PAHs in selected sites from Portugal: biomonitoring with Pinus pinea and Pinus pinaster needles. Arch Environ Contam Toxicol 58:631–647. doi:10.1007/s00244-009-9462-0

    CAS  PubMed  Google Scholar 

  • Ratola N, Alves A, Psillakis E (2011) Biomonitoring of polycyclic aromatic hydrocarbons contamination in the Island of Crete using pine needles. Water Air Soil Pollut 215:189–203. doi:10.1007/s11270-010-0469-y

    CAS  Google Scholar 

  • Reddy CA (1995) The potential of white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328. doi:10.1016/0958-1669(95)80054-9

    CAS  Google Scholar 

  • Reid BJ, Fermor TR, Semple KT (2002) Induction of PAH-catabolism in mushroom compost and its use in the biodegradation of soil-associated phenanthrene. Environ Pollut 118(1):65–73. doi:10.1016/S0269-7491(01)00239-1

    CAS  PubMed  Google Scholar 

  • Ribas LCCC, de Mendonça MM, Camelini CM, Soares CHL (2009) Use of spent mushroom substrate from Agaricus subrufescens (syn. A. blazei, A. brasiliensis) and Lentinula edodes production in enrichment of a soil-based potting media for lettuce (Lactuca sativa) cultivation: growth promotion and soil bioremediation. Bioresour Technol 100:4750–4757. doi:10.1016/j.biortech.2008.10.059

    CAS  PubMed  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24:219–226. doi:10.1016/j.tibtech.2006.03.006

    CAS  PubMed  Google Scholar 

  • Sanglard D, Leisola M, Fiechter A (1986) Role of extracellular ligninases in biodegradation of benzo[a]pyrene by Phanerochaete chrysosporium. Enzyme Microb Technol 8:209–212. doi:10.1016/0141-0229(86)90089-X

    CAS  Google Scholar 

  • Sarthoros C, Yerushalmi L, Beron P, Guiot SR (2005) Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemosphere 61:1042–1050. doi:10.1016/j.chemosphere.2005.02.061

    Google Scholar 

  • Šašek V, Cajthaml T, Bhatt M (2003) Use of fungal technology in soil remediation: a case study. Water Air Soil Pollut 3:5–14. doi:10.1023/A:1023990020199

    Google Scholar 

  • Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ Pollut 112:269–283. doi:10.1016/S0269-7491(00)00099-3

    CAS  PubMed  Google Scholar 

  • Sims RC, Overcash MR (1983) Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev 88:1–68

    CAS  Google Scholar 

  • Smreczak B, Maliszewska-Kordybach B (2003) Primary investigations into determination of potentially bioavailable fractions of PAHs in soils contaminated with those compounds. Arch Environ Prot 29(4):41–50 (in Polish)

    CAS  Google Scholar 

  • Sun F, Wen D, Kuang Y, Li J, Li J, Zuo W (2010) Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of Masson pine (Pinus massoniana L.) growing nearby different industrial sources. J Environ Sci 22:1006–1013. doi:10.1016/S1001-0742(09)60211-4

    CAS  Google Scholar 

  • Tao S, Jiao XC, Xu FL, Li YJ, Liu FZ (2006) Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage. Environ Pollut 140:13–15. doi:10.1016/j.envpol.2005.10.003

    CAS  PubMed  Google Scholar 

  • Tiehm A, Stieber M, Werner P, Frimmel F (1997) Surfactant-enhanced mobilization and biodegradation of polycyclic aromatic hydrocarbons in manufactured gas plant soil. Environ Sci Technol 31:2570–2576. doi:10.1021/es9609967

    CAS  Google Scholar 

  • Ting WTE, Yuan SY, Wu SD, Chang BV (2011) Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. Int Biodeterior Biodegradation 65:238–242. doi:10.1021/es9609967

    CAS  Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119. doi:10.1016/j.envpol.2011.10.025

    CAS  PubMed  Google Scholar 

  • Torres E, Bustos-Jaimes I, Le Borgne S (2003) Potential use of oxidative enzymes for the detoxification of organic pollutants. Appl Catal B Environ 46:1–15. doi:10.1016/S0926-3373(03)00228-5

    CAS  Google Scholar 

  • Traczewska TM (2003) Biotoxicity of microbiologic products of changes of anthracene and phenanthrene in water as the possibility of their removal. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (in Polish)

    Google Scholar 

  • Valentín L, Feijoo G, Moreir MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeterior Biodegradation 58:15–21. doi:10.1016/j.ibiod.2006.04.002

    Google Scholar 

  • Volkering F, Breure AM, Sterkenburg A, van Andel JG (1992) Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl Microbiol Biotechnol 36:548–552. doi:10.1007/BF00170201

    CAS  Google Scholar 

  • Wang DG, Chen JW, Xu Z, Qiao XL, Huang LP (2005) Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine (Pinus thunbergii) needles under irradiation of sunlight: volatilization and photolysis. Atmos Environ 39:4583–4591. doi:10.1016/j.atmosenv.2005.04.008

    CAS  Google Scholar 

  • Włodarczyk-Makuła M (2007a) Changes of PAHs in wastewater and in sewage sludge during treatment and digestion processes, Monographs 126. Częstochowa University of Technology, Częstochowa (in Polish)

    Google Scholar 

  • Włodarczyk-Makuła M (2007b) The impact of sludges added to the soil on changes of selected organic pollutants. Pol J Environ Stud 2A:682–685

    Google Scholar 

  • Wolterbeek B (2002) Biomonitoring of trace elements air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21. doi:10.1016/S0269-7491(02)00124-0

    CAS  PubMed  Google Scholar 

  • Xia X, Li G, Yang Z, Chen Y, Huang GH (2009) Effects of fulvic concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: importance of active oxygen. Environ Pollut 157:1352–1359. doi:10.1016/j.envpol.2008.11.039

    CAS  PubMed  Google Scholar 

  • Zbytniewski R, Buszewski B (2000) Sorption of organic xenobiotics in soil. Ecol Chem Eng 7(12):1290–1299 (in Polish)

    Google Scholar 

  • Zebulun OH, Isikhuemhen OS, Inyang H (2011) Decontamination of anthracene-polluted soil through white rot fungus-induced biodegradation. Environmentalist 31:11–19. doi:10.1007/s10669-010-9284-7

    Google Scholar 

  • Zeng Y, Hong PKA, Wavrek DA (2000) Integrated chemical-biological treatment of benzo(a)pyrene. Environ Sci Technol 3:854–862. doi:10.1021/es990817w

    Google Scholar 

  • Zhang XL, Tao S, Liu WX, Yang Y, Zuo Q, Liu SZ (2005) Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ Sci Technol 39:9109–9114. doi:10.1021/es0513741

    CAS  PubMed  Google Scholar 

  • Zheng ZM, Obbard JP (2000) Removal of polycyclic aromatic hydrocarbons from soil using surfactant and the white rot fungus Phanerochaete chrysosporium. J Chem Technol Biotechnol 75:1183–1189. doi:10.1002/1097-4660(200012)

    CAS  Google Scholar 

  • Zheng ZM, Obbard JP (2001) Effect of non-ionic surfactants on biodegradation of polycyclic aromatic hydrocarbons (PAH) in soil by Phanerochaete chrysosporium. J Chem Technol Biotechnol 76:423–429. doi:10.1002/jctb.396

    CAS  Google Scholar 

  • Zheng ZM, Obbard JP (2002) Oxidation of polycyclic aromatic hydrocarbons (PAH) by the white rot fungus, Phanerochaete chrysosporium. Enzyme Microb Technol 31:3–9. doi:10.1016/S0141-0229(02)00091-1

    CAS  Google Scholar 

  • Zhu X, Pfister G, Henkelmann B, Kotalik J, Bernhöft S, Fiedler S, Schramm KW (2008) Simultaneous monitoring of profiles of polycyclic aromatic hydrocarbons in contaminated air with semipermeable membrane devices and spruce needles. Environ Pollut 156:461–466. doi:10.1016/j.envpol.2008.01.023

    CAS  PubMed  Google Scholar 

  • Zygmunt B, Kremer E, Rompa M, Konieczka P, Namieśnik J (2003) Application of certified materials in analysis of organic environmental pollutants. Ecol Chem Eng 10(7):655–677 (in Polish)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the partial financial support of the Polish Ministry of Science and Higher Education (National Science Centre) in preparing the manuscript—grant no. NN 305 372438.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Gąsecka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gąsecka, M., Włodarczyk-Makuła, M., Popenda, A., Drzewiecka, K. (2015). Phytoremediation of PAH-Contaminated Areas. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_21

Download citation

Publish with us

Policies and ethics