Skip to main content

Phytoremediation of RDX

  • Chapter
  • First Online:
Phytoremediation
  • 2661 Accesses

Abstract

Large amounts of land and groundwater have been polluted through the manufacture, detonation, and disposal of explosives. Explosives are xenobiotic compounds, being toxic to biological systems, and their recalcitrance leads to persistence in the environment. Of the nitramines, RDX is currently the most widely used military explosive and is of particular an environmental concern because of its mobility in soil (Seth-Smith. Microbial degradation of RDX. Ph.D Thesis, University of Cambridge, 2002). Phytoremediation is an inexpensive, self-sustaining, and environmental friendly process that has the potential to remove residual energetic materials from surface soil and groundwater. It is believed that RDX is taken up by plants and accumulates as a parent compound. Currently, it is not understood what transformation pathway is used in the remediation process or if any transformation products are returned to the environment. Certain genes may be responsible for the phytoremediation of RDX. Understanding how phytoremediation works is an important step to being able to implement this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asay KH, Horton WH, Jensen KB, Palazzo AJ (2001) Merits of native and introduced Triticeae grasses on semiarid rangelands. Can J Plant Sci 81:45–52

    Article  Google Scholar 

  • Bailey A, Murray SG (2000) Explosives, propellants and pyrotechnics. Redwoods, Wiltshire

    Google Scholar 

  • Best EPH, Sprecher SL, Laroon SL, Fredrickson HL, Bader DF (1999) Environmental behaviour of explosives in groundwater from the Milan Army ammunition plant in aquatic and wetland plant treatments: removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 30:3383–3396

    Article  Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, and Bader DF (1999a). Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments: Removal, mass balances and fate in groundwater of TNT and RDX. Chemosphere 38:3383–3396

    Google Scholar 

  • Best EPH, Sprecher SL, Larson SL, Fredrickson HL, and Bader DF (1999b) Environmental behavior of explosives in groundwater from the Milan Army Ammunition Plant in aquatic and wetland plant treatments. Uptake and fate of TNT and RDX in plants. Chemosphere 39:2057–2072

    Google Scholar 

  • Bhadra R, Waywent DG, Hughes JB, Shanks IV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33(3):446–452

    Article  CAS  Google Scholar 

  • Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB, Shanks JV (2001) Studies on plant-mediated fate of the explosives RDX and HMX. Chemosphere 44:1259–1264

    Article  CAS  PubMed  Google Scholar 

  • Binks PR, Nicklin S, Bruce NC (1995) Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol 61:1318–1322

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boopathy R, Gurgas M, Ullian J, Manning JF (1998a) Metabolism of explosive compounds by sulfate-reducing bacteria. Curr Microbiol 37:127–131

    Article  CAS  PubMed  Google Scholar 

  • Boopathy R, Manning J, Kulpa CF (1998b) Biotransformation of explosives by anaerobic consortia in liquid culture and in soil slurry. Int Biodeter Biodegrad 41:67–74

    Article  CAS  Google Scholar 

  • Burdette LJ, Cook LL, Dyer RS (1988) Convulsant properties of cyclotrimethylenetrinitramine (RDX): spontaneous audiogenic, and amygdaloid kindled seizure activity. Toxicol Appl Pharmacol 92:436–444

    Article  CAS  PubMed  Google Scholar 

  • Burken JG, Shanks JV, Thompson PL (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC, Boca Raton, FL, pp 239–276

    Google Scholar 

  • Burton DT, Turley SD, Peters GT (1994a) The acute and chronic toxicity of hexahydro-1,3,5- trinitro- 1,3,5-triazine (RDX) to the fathead minnow (Pimephales promelas). Chemosphere 29:567–579

    Article  CAS  Google Scholar 

  • Burton DT, Turley SD, Peters GT (1994b) The toxicity of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) to the freshwater green alga Selenastrum capricornutum. Water Air Soil Pollut 76:449–457

    Article  CAS  Google Scholar 

  • Campose VM, Merino I, Casado R, Pacios LF, Gamez L (2008) Review: Phytoremediation of organic pollutants. Span J Agric Res 6(spl iss):38–47. Available online at www.inia.es/sjar

  • Chang Y, Corapcioglu MY (1998) Plant-enhanced subsurface bioremediation of non-volatile hydrocarbons. J Environ Eng 112:162–169

    Article  Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 29:13–21

    Article  Google Scholar 

  • Coleman J, Blake-Kalff M, Davies E (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol Biochem 30:1159–1167

    Article  Google Scholar 

  • Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbiol 93:13

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110(3):715–719

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Cunningham SD, Andersen TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. In: Sparks DL (ed) Advances in agronomy, vol 56. Academic, New York, pp 55–114

    Google Scholar 

  • Doskey CM (2012) Uptake and fate of hexahydro-1,3,5-trinitro-1,3,5-triazine by Chrysopogon zizanioides. M.Sc Thesis, Michigan Technological University

    Google Scholar 

  • Drzyzga O, Gorontzy T, Schmidt A, Blotevogel KH (1995) Toxicity of explosives and related compounds to the luminescent bacterium Vibrio fischeri NRRL-B-11177. Arch Environ Contam Toxicol 28:229–235

    CAS  Google Scholar 

  • Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL, Dean JFD (2003) SAGE analysis of transcriptome responses in Arabidopsis roots exposed to 2, 4, 6-trinitrotoluene. Plant Physiol 133:1397–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ekman DR, Wolfe NL, Dean JFD (2005) Gene expression changes in Arabidopsis thaliana seedling roots exposed to the munition hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Sci Technol 39:6313–6320

    Article  CAS  PubMed  Google Scholar 

  • Etnier EL (1989) Water quality criteria for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Regul Toxicol Pharmocol 9:147–57

    Article  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Fernando T, Anot SD (1991) Biodegradation of munition waste, TNT (2,4,6-trinitrotoluene), and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Phanerochaete chrysosporium. ACS Symp 468:214–232

    Article  CAS  Google Scholar 

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68:166–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fox JL (1997) U.S. military takes up phytoremediation. Nat Biotechnol 15:612

    CAS  Google Scholar 

  • Frank AB, Bauer A (1991) Rooting activity and water use during vegetative development of crested and western wheatgrass. Agron J 83:906–910

    Article  Google Scholar 

  • Freedman DL, Sutherland KW (1998) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate-reducing conditions. Water Sci Technol 38:33–40

    Article  CAS  Google Scholar 

  • Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial-phase optimization for bioremediation of munition compound-contaminated soils. Appl Environ Microbiol 59:2171–2177

    PubMed Central  CAS  PubMed  Google Scholar 

  • George SE, Huggins-Clark G, Brooks LR (2001) Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations. Mutat Res 490:45–56

    Article  CAS  PubMed  Google Scholar 

  • Goldberg DJ, Green ST, Nathwani D, McMenamin J, Hamlet N, Kennedy DH (1992) RDX intoxication causing seizures and a widespread petechial rash mimicking meningococcemia. J R Soc Med 85:181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hannink NK, Rosser SJ, Bruce NC (2002) Phytoremediation of explosives. Crit Rev Plant Sci 21:511–538

    Article  CAS  Google Scholar 

  • Harrell-Bruder B, Hutchins KL (1995) Seizures caused by ingestion of composition C-4. Ann Emerg Med 26:746–748

    Article  CAS  PubMed  Google Scholar 

  • Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1991) Fate of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in soil and bioaccumulation in bush bean hydroponic plants. Environ Toxicol Chem 10:845–855

    Article  CAS  Google Scholar 

  • Hawari J (2000) Biodegradation of RDX and HMX: from basic research to field application. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. CRC, Boca Raton, FL, pp 277–310

    Google Scholar 

  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S (2000) Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol 66:2652–2657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17:463–469

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Li ZS, Lu YP, Rea PA (1997) The GS-X pump in plant, yeast, and animal cells: structure, function, and gene expression. Biosci Rep 17:189–207

    Article  CAS  PubMed  Google Scholar 

  • Jackson M, Green JM, Hash RL, Lindsten DC and Tatyrek AF (1978) Nitramine (RDX-HMX) wastewater treatment at the Holston Army Ammunition Plant. In Dover NJ (ed) USA: US Army Armament Research and Development Command. Report ARLCD-77013

    Google Scholar 

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 104(43):16822–16827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  PubMed  Google Scholar 

  • Jenkins TF, Hewitt AD, Grant CL, Thiboutot S, Ampleman G, Walsh ME, Ranney TA, Ramsey CA, Palazzo AJ, Pennington JC (2006) Identity and distribution of residues of energetic compounds at army live-fire training ranges. Chemosphere 63:1280–1290

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Labelle S, Paquet L, Rho D, Samson R, Greer CW, Hawari J, Thiboutot S, Lavigne J, Ampleman G, Lavertu R (1995) Assessment of the aerobic biodegradation potential of RDX, TNT, GAP and NC. In: Moo-Young M, Anderson WA, Chakrabarty AM (eds) Environmental biotechnology-principles and applications. Kluwer, Dordrecht, pp 368–381

    Google Scholar 

  • Just CJ, Schnoor JL (2004) Phytophotolysis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in leaves of reed canary grass. Environ Sci Technol 38:290–295

    Article  CAS  PubMed  Google Scholar 

  • Kaplan AS, Berghout CF, Peczenik A (1965) Human intoxication from RDX. Arch Environ Health 10:877–883

    Article  CAS  PubMed  Google Scholar 

  • Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive contaminated soil. Appl Environ Microbiol 60:4608–4611

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ (2000) Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol 46:278–282

    Article  CAS  PubMed  Google Scholar 

  • Kucukardali Y, Acar HV, Ozkan S, Nalbant S, Yazgan Y, Atasoyu EM, Keskin O, Naz A, Akyatan N, Gokben M (2003) Accidental oral poisoning caused by RDX (cyclonite): a report of 5 cases. J Intensive Care Med 18:42–46

    Article  PubMed  Google Scholar 

  • Kulkarni AP (2001) Lipoxygenase – a versatile biocatalyst for biotransformation of endobiotics and xenobiotics. Cell Mol Life Sci 58:1805–1825

    Article  CAS  PubMed  Google Scholar 

  • Lachance B, Robidoux PY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Cytotoxic and genotoxic effects of energetic compounds on bacterial and mammalian cells in vitro. Mutat Res 444:25–39

    Article  CAS  PubMed  Google Scholar 

  • Larkin JE, Frank BC, Gavras H, Sultana R, Quackenbush J (2005) Independence and reproducibility across microarray platforms. Nat Methods 2:337–344

    Article  CAS  PubMed  Google Scholar 

  • Levine BS, Furedi EM, Gordon DE, Burns JM, Lish PM (1981) Thirteen week toxicity study of hexahydro-1,3,5-trinitro-1,3,5- triazine (RDX) in Fischer 344 rats. Toxicol Lett 8:241–245

    Article  CAS  PubMed  Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42:817–823

    PubMed Central  CAS  PubMed  Google Scholar 

  • McCutcheon SC (1998) Phytoremediation: applications and limitations. Plant Biotechnology Institute Bulletin

    Google Scholar 

  • Meagher RB (2006) Another toxic explosive is now amenable to phytoremediation, but the political will to implement this technology remains in doubt. Nat Biotechnol 24(2):161–163

    Article  CAS  PubMed  Google Scholar 

  • Mezzari MP, Walters K, Jelinkova M, Shih MC, Just CL, Schnoor JL (2005) Gene expression and microscopic analysis of Arabidopsis exposed to chloroacetanilide herbicides and explosive compounds. A phytoremediation approach. Plant Physiol 138:858–869

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitsch WJ (1993) Ecological engineering. Environ Sci Technol 27:438–445

    Article  Google Scholar 

  • Osmon JL, Klausmeier RE (1973) Microbial degradation of explosives. Dev Ind Microbiol 14:247–252

    CAS  Google Scholar 

  • Palazzo AJ, Jensen KB, Waldron BL, Cary TJ (2005) Effects of tank tracking on range grasses. J Terramechanics 42:177–191

    Article  Google Scholar 

  • Pennington JC, Brannon JM (2002) Environmental fate of explosives. Thermochim Acta 384:163–172

    Article  CAS  Google Scholar 

  • Peters GT, Burton DT, Paulson RL, Turley SD (1991) The acute and chronic toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to three freshwater invertebrates. Environ Toxicol Chem 10:1073–1081

    Article  CAS  Google Scholar 

  • Petersen D, Chandramouli GVR, Geoghegan J, Hilburn J, Paarlberg J, Kim C, Munroe D, Gangi L, Han J, Puri R, Staudt L, Weinstein J, Barrett JC, Green J, Kawasaki E (2005) Three microarray platforms: an analysis of their concordance in profiling gene expression. BMC Genomics 6:63

    Article  PubMed Central  PubMed  Google Scholar 

  • Pilon-smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Pylatuik JD, Fobert PR (2005) Comparison of transcript profiling on Arabidopsis microarray platform technologies. Plant Mol Biol 58:609–624

    Article  CAS  PubMed  Google Scholar 

  • Rao MR, Halfhill MD, Abercrombie LG, Ranjan P, Abercrombie JM, Gouffon JS, Saxton AM, Neal Stewart C Jr (2009) Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Funct Integr Genomics 9:537–547. doi:10.1007/s10142-009-0125-z

    Article  CAS  PubMed  Google Scholar 

  • Rea PA, Li ZS, Lu YP, Drozdowicz YM, Martinoia E (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    Article  CAS  PubMed  Google Scholar 

  • Regan KM, Crawford RL (1994) Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett 16:1081–1086

    Article  CAS  Google Scholar 

  • Robidoux PY, Svendsen C, Caumartin J, Hawari J, Ampleman G, Thiboutot S, Weeks JM, Sunahara GI (2000) Chronic toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Toxicol Chem 19:1764–1773

    Article  CAS  Google Scholar 

  • Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2002) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388

    Article  CAS  PubMed  Google Scholar 

  • Rogojina AT, Orr WE, Song BK, Geisert EE Jr (2003) Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Mol Vis 9:482–496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rollo S, Moon H, Subramanian M, Oliver DJ, Shanks JV (2004) Phytoremediation of RDX: screening studies on Arabidopsis thaliana. In: Proceedings of the 33rd annual biochemical engineering symposium, Lincoln, NE

    Google Scholar 

  • Rosenblatt DH, Burrows EP, Mitchel WR, Parmer DL (1991) Organic explosives and related compounds. In: Hutzinger O (ed) The handbook of environmental chemistry. Springer, Berlin

    Google Scholar 

  • Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HM, Rathbone DA, Strand SE, Bruce NC (2006) An explosive-degrading cytochrome P450 activity and its targeted application for the phytoremediation of RDX. Nat Biotechnol 24:216–219

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Budarina MV, Barker A, Lorenz A, Strand SE, Bruce NC (2011) Engineering plants for the phytoremediation of RDX in the presence of the co-contaminating explosive TNT. New Phytol 192:405–413

    Article  CAS  PubMed  Google Scholar 

  • Sanderman JH (1994) Higher plant metabolism of xenobiotics: the ‘green liver’ concept. Pharmacogenetics 4:225–241

    Article  Google Scholar 

  • Sandermann H Jr (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17:82–84

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin M, Dodard SG, Savard K, Lachance B, Robidoux PY, Kuperman RG, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (2009) Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine by the earthworm Eisenia Andrei in a sandy loam soil. Environ Toxicol Chem 28:2125–2133

    Article  CAS  PubMed  Google Scholar 

  • Schaffner A, Messner B, Langebartels C, Sandermann H (2002) Genes and enzymes for in-planta phytoremediation of air, water and soil. Acta Biotechnol 22:141–151

    Article  CAS  Google Scholar 

  • Schneider JF (1995) Uptake of explosives from contaminated soil by existing vegetation at the Iowa Army ammunition Plant, Argonne National Laboratory

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):318A–323A

    Article  CAS  PubMed  Google Scholar 

  • Schnoor J, Van Aken B, Brentner LB, Tanaka S, Flokstra B, Yoon JM (2006) Identification of metabolic routes and catabolic enzymes involved in phytoremediation of the nitro substituted explosives TNT, RDX, and HMX Final Technical Report. SERDP Project Number CU1317

    Google Scholar 

  • Sealock GA (2002) Phytoremediation of explosives using Populus deltoides. M.Sc Thesis, Athens, GA

    Google Scholar 

  • Seth-Smith HM (2002) Microbial degradation of RDX. Ph.D Thesis, University of Cambridge

    Google Scholar 

  • Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68:4764–4771

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shanks JV, Oliver DJ, Moon H, Rollo S, Subramanian M (2003) Genetic and biochemical basis for the transformation of energetic materials (RDX, TNT, DNTs) by plants. In: Proceedings of the annual meeting of the American Institute of Chemical Engineers, San Francisco, CA

    Google Scholar 

  • Shen CF, Guiot SR, Thiboutot S, Ampleman G, Hawari J (1998) Fate of explosives and their metabolites in bioslurry treatment processes. Biodegradation 8:339–347

    Article  CAS  Google Scholar 

  • Shen CF, Hawari JA, Paquet L, Ampleman G, Thiboutot S, Guiot SR (2001) Explosive biodegradation in soil slurry batch reactors amended with exogenous microorganisms. Water Sci Technol 43:291–298

    CAS  PubMed  Google Scholar 

  • Shermata TW, Hawari J (2000) Mineralization of RDX by the white rot fungus Phanerochaete chrysosporium to carbon dioxide and nitrous oxide. Environ Sci Technol 34:3384–3388

    Article  Google Scholar 

  • Shi LM, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, De Longueville F, Kawasaki ES, Lee KY, Luo YL, Sun YMA, Willey JC, Setterquist RA, Fischer GM (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Smith-Simon C, Goldhaber S (1999) RDX – ATSDR toxicological profile. Report 205-93-0606. U.S. Department of Health and Human Services, Atlanta, GA

    Google Scholar 

  • Soli G (1973) Microbial degradation of cyclonite (RDX). Report NWC-TP-5525/AD-762 751. U.S. National Technical Information Service (Naval Weapons Center China Lake Calif), Washington, DC

    Google Scholar 

  • Spain JC (2000) Introduction. In: Spain JC, Hughes J, Knackmuss HJ (eds) Biodegradation of nitroaromatic compounds and explosives. CRC, BocaRaton, FL, pp 1–5

    Google Scholar 

  • Subramanian M, Shanks JV (2003) Role of plants in the transformation of explosives. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, New York

    Google Scholar 

  • Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    CAS  PubMed  Google Scholar 

  • Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31:5676–5684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka S, Brentner LB, Merchie KM, Schnoor JL, Jong MY, Van Aken B (2007) Analysis of gene expression in poplar trees (Populus deltoides x nigra, DN34) exposed to the toxic explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Int J Phytoremediation 9:15–30

    Article  CAS  PubMed  Google Scholar 

  • Thiboutot S, Lavigne J, Ampleman G, Richer G, Lavertu R, Samson R, Greer C, Hawari J, Rho D (1994) Presented at the international symposium on energetic materials technology, Orlando, FL

    Google Scholar 

  • Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1990) Decreased transpiration in polar trees exposed to 2,4,6-trinitro toluene. Environ Toxicol Chem 17:902–906

    Article  Google Scholar 

  • Thompson PL, Ramer LA, Guffey AP, Schnoor JL (1998) Decreased transpiration in polar trees exposed to 2,4,6-trinitrotoluene. Enviro Toxicol Chem 17:902–906

    Google Scholar 

  • Thompson PL, Ramer LA, Schnoor JL (1999) Hexahydro-1,3,5-trinitro-1,3,5-triazine translocation in poplar trees. Environ Toxicol Chem 18:279–284

    Article  CAS  Google Scholar 

  • Toze S, Zappia L (1999) Microbial degradation of munition compounds in production wastewater. Water Res 33:3040–3045

    Article  CAS  Google Scholar 

  • US Defense Science Board Task Force (1998) Unexploded ordnance (UXO) clearance, active range UXO clearance, and explosive ordnance disposal (EOD) programs. Office of the Undersecretary of Defense for Acquisition and Technology, Washington, DC

    Google Scholar 

  • US General Accounting Office (2004) Department of Defense Operational Ranges. More reliable cleanup cost estimates and a proactive approach to identifying contamination are needed. Report to Congressional Requesters

    Google Scholar 

  • Van Aken B, Yoon JM, Just CL, Schnoor JL (2004a) Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides · nigra DN-34). Environ Sci Technol 38:4572–4579

    Article  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004b) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro- 1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. Associated with poplar trees. Appl Environ Microbiol 70:508–517

    Article  PubMed Central  PubMed  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2007) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154

    Article  CAS  PubMed  Google Scholar 

  • Von Oettingen WF, Donahue DD, Yagonda H, Monaco AR, Harris MR (1949) Toxicity and potential dangers of cyclotrimethylenetrinitramine (RDX). J Ind Hyg Toxicol 31:21–31

    Google Scholar 

  • Winfield LE, Rodgers JH Jr, D’Surney SJ (2004) The responses of selected terrestrial plants to short (<12 days) and long term (2, 4 and 6 wk) hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) exposure. Part I: Growth and developmental effects. Ecotoxicology 13:335–347

    Article  CAS  PubMed  Google Scholar 

  • Woody RC, Kearns GL, Brewster MA, Turley CP, Sharp GB, Lake RS (1986) The neurotoxicity of cyclotrimethylenetrinitramine (RDX) in a child: a clinical and pharmacokinetic evaluation. J Toxicol Clin Toxicol 24:305–319

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang X, Yin P, Li W, Zhou P (1983) Studies on three strains of Corynebacterium degrading cyclotrimethylene-trinitroamine (RDX). Acta Microbiol Sin 23:251–256

    CAS  Google Scholar 

  • Yoon JM, Oliver DJ, Shanks JV (2005) Plant transformation pathways of energetic materials (RDX, TNT, DNTs). In: Eaglesham A, Bessin R, Trigiano R, Hardy RWT (eds) Agricultural biotechnology: beyond food and energy to health and the environment. National Agricultural Biotechnology Council Report 17. National Agricultural Biotechnology Council, Ithaca, NY, pp 105–116

    Google Scholar 

  • Young DM, Unkefer PJ, Ogden KL (1997) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnol Bioeng 53:515–522

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Pan X, Cobb GP, Anderson TA (2009) Uptake, bioaccumulation, and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and its reduced metabolites (MNX and TNX) by the earthworm (Eisenia fetida). Chemosphere 76:76–82

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Srivastava Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Srivastava, N. (2015). Phytoremediation of RDX. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_18

Download citation

Publish with us

Policies and ethics