Skip to main content

PAH Contamination of Urban Soils and Phytoremediation

  • Chapter
  • First Online:
Phytoremediation

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants, and some are known to be carcinogenic. PAH content of soils from three test sites including a refinery, a dismantled oil depot and a petrol filling station was analysed. Except dibenz(a,h)anthracene, 15 other PAHs were detected. Total PAH concentrations were in the order refinery > petrol filling station > oil depot. PAH levels were higher in the upper layer of soils at all sites. Three-ring and four-ring PAHs were found to be dominant at both depths. In greenhouse study, Cymbopogon jwarancusa and Helianthus annuus were screened for their ability to phytoremediate PAHs. Soil amendments to enhance their potential were also evaluated. Many C. jwarancusa treatments succumbed. In all vegetated treatments, the decline in TPAH levels was not only higher but also more rapid than the unplanted control. Total PAH degradation ranged from 95 to 99 % in C. jwarancusa at 240 DAT (days after treatment) and 75–84 % in H. annuus at 120 DAT. The final reduction of total PAHs in the unplanted control T0 was about 73 %. Rhizodegradation seemed to be the main mechanism of phytoremediation involved. Individual PAH degradation trends differed as did the efficacy of different amendments. Physiological parameters stabilised within 30–60 days of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal T, Khillare PS, Shridhar V (2006) PAHs contamination in bank sediment of the Yamuna River, Delhi, India. Environ Monit Assess 123(1–3):151–166

    CAS  PubMed  Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colon-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56(421):2983–2994

    CAS  PubMed  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27(13):2630–2636

    CAS  Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: fundamentals and applications. Benjamin/Cummings, Don Mills, ON

    Google Scholar 

  • Bakker MI, Casado B, Koerselman JW, Tolls J, Kolloffel C (2000) Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery. Sci Total Environ 263:91–100

    CAS  PubMed  Google Scholar 

  • Berteigne M, Rose C, Gérard J, Dizengremel P (1989) Effects of polyaromatic hydrocarbons on the forest ecosystem and woody plants. Ann Sci For 46(Suppl):561–564

    Google Scholar 

  • Besalatpour A, Khoshgoftarmanesh AH, Hajabbasi MA, Afyuni M (2008) Germination and growth of selected plants in a petroleum contaminated calcareous soil. Soil Sediment Contam 17(6):665–676

    CAS  Google Scholar 

  • BIO-WISE (2000) Contaminated land remediation: a review of biological technology, London Dept. of Trade and Industry, Govt. of UK

    Google Scholar 

  • Bossert I, Bartha R (1984) The fate of petroleum in soil ecosystems. In: Atlas RM (ed) Petroleum microbiology. MacMillan, New York

    Google Scholar 

  • Bourotte C, Forti MC, Taniguchi S, Bicego M, Lotufo P (2005) A wintertime study of PAHs in fine and coarse aerosols in Sao Paulo city, Brazil. Atmos Environ 39:3799–3811

    CAS  Google Scholar 

  • Briggs GG, Bromilow RH, Evans AA, Willams M (1983) Relationship between lipophilicity and the distribution of non-ionized chemicals in barley shoot following uptake by the root. Pestic Sci 14:492–500

    CAS  Google Scholar 

  • Capuano F, Cavalchi B, Martinelli G, Pecchini G, Renna E, Scaroni I, Bertacchi M, Bigliardi G (2005) Environmental prospection for PCDD/PCDF, PAH, PCB and heavy metals around the incinerator power plant of Reggio Emilia town (Northern Italy) and surrounding main roads. Chemosphere 58:1563–1569

    CAS  PubMed  Google Scholar 

  • Ceccanti B, Masciandaro G, Garcia C, Macci C, Doni S (2006) Soil bioremediation: combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut 177:383–397

    CAS  Google Scholar 

  • Cerna M, Pochmanova D, Pastorkova A, Bene I, Lenicek J, Topinka J, Binkova B (2000) Genotoxicity of urban air pollutants in the Czech Republic Part I. Bacterial mutagenic potencies of organic compounds adsorbed on PM10 particulates. Mutat Res 469:71–82

    CAS  PubMed  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3(2–3):351–368

    CAS  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Indus Microbiol Biotechnol 19:324–333

    Google Scholar 

  • Chen B, Xuan X, Zhu L, Wang J, Gao Y, Yang K, Shen X, Lou B (2004) Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38:3558–3568

    CAS  PubMed  Google Scholar 

  • Chen L, Ran Y, Xing B, Mai B, He J, Wei X, Fu J, Sheng G (2005) Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere 60:879–890

    CAS  PubMed  Google Scholar 

  • Committee on In Situ Bioremediation, Water Science and Technology Board, Commission on Engineering and Technical Systems, and National Research Council (1993) In situ bioremediation: when does it work? National Academy Press, Washington, DC

    Google Scholar 

  • Crépineau C, Rychen G, Feidt C, Le Roux Y, Lichtfouse E, Laurent F (2003) Contamination of pastures by polycyclic aromatic hydrocarbons (PAHs) in the vicinity of a highway. J Agric Food Chem 51:4841–4845

    PubMed  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol Plant 29(4):207–212

    Google Scholar 

  • Daane LL, Harjono I, Zylstra GJ, Maggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon degrading bacteria associated with the rhizobia of salt marsh plants. Appl Environ Microbiol 67:2683–2691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Desouza MP, Huang CP, Chee N, Terry N (1999) Rhizosphere bacteria enhance the accumulation of Selenium and Mercury in wetland plants. Planta 209(2):259–263

    CAS  Google Scholar 

  • DHHS (1995) Agency for toxic substances and disease registry. Toxicological profile for polyaromatic hydrocarbons, U.S. Department of Health & Human Services

    Google Scholar 

  • Dominguez-Rosado E, Pichtel J (2004) Phytoremediation of soil contaminated with used motor oil: II. Greenhouse studies. Environ Eng Sci 21(2):169–180

    CAS  Google Scholar 

  • Drooge BL, Grimalt JO, Torres-Gracia CJ, Cuevas E (2002) Semivolatile organochlorine compounds in the free troposphere of the Northeastern Atlantic. Environ Sci Technol 36:1155–1161

    PubMed  Google Scholar 

  • Duke O, Albert IO (2007) Spatial variation and distribution of polycyclic aromatic hydrocarbons in soil. Bull Chem Soc Ethiop 21(3):331–340

    CAS  Google Scholar 

  • Durand C, Ruban V, Ambles A, Oudot J (2004) Characterization of the organic matter of sludge: determination of lipids, hydrocarbons and PAHs from road retention/infiltration ponds in France. Environ Pollut 132:375–384

    CAS  PubMed  Google Scholar 

  • Durmishidze SV (1977) Metabolism of certain air-polluting organic compounds in plants (review). Appl Biochem Microbiol 13(6):646–653 (Transl. 1978)

    Google Scholar 

  • Duxbury CL, Dixon DG, Greenberg BM (1997) Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ Toxicol Chem 16:1739–1748

    CAS  Google Scholar 

  • Edwards NT (1988) Assimilation and metabolism of polycyclic aromatic hydrocarbons by vegetation – an approach to this controversial issue and suggestions for future research. In: Polycyclic aromatic hydrocarbons: a decade of progress – 10th International symposium, Columbus, OH, Battelle Press

    Google Scholar 

  • EPA (1997) Electro kinetic laboratory and field processes applicable to radioactive and hazardous mixed waste in soil and groundwater. EPA 402/R-97/006. Washington, DC

    Google Scholar 

  • Eweis JB, Ergas SJ, Chang DPY, Schroeder ED (1998) Bioremediation principles. McGraw-Hill, Toronto

    Google Scholar 

  • Faheed FA (2005) Effect of lead stress on the growth and metabolism of Eruca sativa M. seedlings. Acta Agron Hung 53(3):319–327

    CAS  Google Scholar 

  • Fang GC, Yang IL, Chen MH (2004) PAHs in the ambient air of suburban and industrial regions of central Taiwan. Chemosphere 54:443–452

    Google Scholar 

  • Ferro A, Kennedy J, Doucette W, Nelson S, Jauregui G, McFarland B, Bugbee B (1997) Fate of benzene in soils planted with alfalfa: uptake, volatilization, and degradation. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants, ACS Symposium Series 664. American Chemical Society, Washington, DC, pp 223–237

    Google Scholar 

  • Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel JL (2002) Soil to root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31:1649–1656

    CAS  PubMed  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformation in the soil–rhizosphere–plant system, fundamentals and potential application of phytoremediation. J Biotechnol 99:259–278

    CAS  PubMed  Google Scholar 

  • Gamal HR (2005) Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Microbiology 33(1):41–50

    CAS  Google Scholar 

  • Graham J, Leonard R, Menge JA (1981) Membrane-mediated decrease in root exudation responsible for phosphorus-inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:6488552

    Google Scholar 

  • Gunther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33(2):203–215

    CAS  PubMed  Google Scholar 

  • Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New York

    Google Scholar 

  • Hawthorne SB, Grabanski CB (2000) Vaporization of polycyclic aromatic hydrocarbons (PAHs) from sediments at ambient conditions. Environ Sci Technol 34(20):4348–4353

    CAS  Google Scholar 

  • Henner P, Schiavon M, Druelle V, Lichtfouse E (1999) Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Org Geochem 30:963–969

    CAS  Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EE (1998) Phytoremediation: using green plants to clean up contaminated soil, groundwater, and wastewater. Submitted to the U.S. Department of Energy, Assistant Secretary for Energy Efficient and Renewable Energy under Contract W-31-109-Eng-38.

    Google Scholar 

  • Holloway MP, Biaglow MC, McCoy EC, Anders M, Rosenkranz HS, Howard PC (1987) Photochemical instability of 1-nitropyrene, 3-nitrofluoranthene, 1,8-dinitropyrene and their parent polycyclic aromatic hydrocarbons. Mutat Res 187(4):199–207

    CAS  PubMed  Google Scholar 

  • Hooker JE, Atkinson D (1996) Arbuscular mycorrhizal fungi-induced alternation to tree-root architecture and longevity. J Plant Nutr Soil Sci 159:229–234

    CAS  Google Scholar 

  • Huang XD, Zeiler LF, Dixon DG, Greenberg BM (1996) Photoinduced toxicity of PAHs to the foliar regions of Brassica napus (Canola) and Cucumbis sativus (Cucumber) in simulated solar radiation. Ecotoxicol Environ Saf 35:190–197

    CAS  PubMed  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1987) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, supplement 7. IARC, Lyons

    Google Scholar 

  • Joner EJ, Johansen A, Loibner AP, de la Cruz MA, Szolar OH, Portal JM, Leyval C (2001) Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ Sci Technol 35(13):2773–2777

    CAS  PubMed  Google Scholar 

  • Juhasz AL, Britz ML, Stanley GA (1997) Degradation of benzo[a]pyrene, dibenzo[a,h]anthracene and coronene by Burkholderia cepacia. Wat Sci Technol 36(10):45–51

    Google Scholar 

  • Kim J, Kang SH, Min KA, Cho KS, Lee IS (2006) Rhizosphere microbial activity during phytoremediation of diesel-contaminated soil. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(11):2503–2516

    CAS  PubMed  Google Scholar 

  • Kömives T, Gullner G (2000) Phytoremediation. In: Wilkinson RE (ed) Plant-environment interactions. Marcel Dekker, New York

    Google Scholar 

  • Kosaric N (2001) Biosurfactants for soil bioremediation. Food Technol Biotechnol 39(4):295–304

    CAS  Google Scholar 

  • Kroening SJ, Leung DW, Greenfield LG, Galilee C (2001) Losses of diesel oil by volatilisation and effects of diesel oil on seed germination and seedling growth. Environ Technol 22(9):1113–1117

    CAS  PubMed  Google Scholar 

  • Lamb SI, Kaplan IR (1980) Organic compounds in urban atmosphere. J Air Pollut Control Assoc 30:1098–1115

    CAS  Google Scholar 

  • Li JH, Gao Y, Wu SC, Cheung KC, Wang XR, Wong MH (2008) Physiological and biochemical responses of rice (Oryza Sativa L.) to phenanthrene and pyrene. Int J Phytoremediation 10(2):106–118

    CAS  Google Scholar 

  • Li J, Shang X, Zhao Z, Tanguay R, Dong Q, Huang C (2010) Polycyclic aromatic hydrocarbons in water, sediment, soil and plants of the Aojiang River waterway in Wenzhou, China. J Hazard Mater 173:75–81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin H (2004) The study of phytoremediation of oil spill contaminated wetland soil. oai: NSYSU: etd-0721104-155933. http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etdetd-0721104-155933

  • Liste HH, Alexander M (2000a) Plant-promoted pyrene degradation in soil. Chemosphere 40:7–10

    CAS  PubMed  Google Scholar 

  • Liste HH, Alexander M (2000b) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    CAS  PubMed  Google Scholar 

  • Loening K, Merrit J (1990) Polynuclear aromatic hydrocarbons: nomenclature guide, 1st edn. Battelle, Columbus, OH

    Google Scholar 

  • Mackay D, Shiu WY (1992) Illustrated handbook of physical-chemical properties and environmental fate of organic chemicals, Vol. II – Polynuclear aromatic hydrocarbons and polychlorinated dioxins and dibenzofurans. Lewis, Chelsea

    Google Scholar 

  • Maliszewska-Kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11:121–127

    Google Scholar 

  • Maliszewka-Kordybach B (1999) Persistent organic contaminants in the environment: PAHs as a case study. In: Bioavailability of organic xenobiotics in the environment, (eds.) Baveye PH, Block JC, Goncharuk VV, pp3-34. Kluwer Publ. Netherlands

    Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2000) Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs) – effect on plants. Environ Technol 21(10):1099–1110

    CAS  Google Scholar 

  • Mar Vázquez M, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Environ Sci Pollut Res 10(4):235–244

    Google Scholar 

  • Margesin R, Hämmerle M, Tscherko D (2007) Microbial activity and community composition during bioremediation of diesel-oil-contaminated incubation soil: effects of hydrocarbon concentration, fertilizers, time. Microb Ecol 53(2):259–269

    CAS  PubMed  Google Scholar 

  • Marschner P, Yang PH, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    CAS  Google Scholar 

  • Marwood CA, Solomon KR, Greenberg BW (2001) Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of PAHs. Environ Toxicol Chem 20:890–898

    CAS  PubMed  Google Scholar 

  • Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65:449–456

    CAS  PubMed  Google Scholar 

  • Merkl NR, Schultze K, Infante C (2004) Phytoremediation in the tropics – the effect of crude oil on the growth of tropical plants. Bioremediat J 8(3–4):177–184

    CAS  Google Scholar 

  • Meudec A, Dussauze J, Deslandes E, Poupart N (2006) Evidence for bioaccumulation of PAHs into internal shoot tissues a halophytic plant artificially exposed to petroleum polluted-sediments. Chemosphere 65:474–481

    CAS  PubMed  Google Scholar 

  • Meudec A, Poupart N, Dussauze J, Deslandes E (2007) Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Sci Tot Environ 381:146–156

    Google Scholar 

  • Miller MM, Wasik SP, Huang GL, Shiu WY, Mackay D (1985) Relationships between octanol–water partition coefficient and aqueous solubility. Environ Sci Technol 19(6):522–529

    CAS  PubMed  Google Scholar 

  • Motelay-Massei A, Ollivon D, Garban B, Teil MJ, Blanchard M, Chevreuil M (2004) Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere 55:555–565

    CAS  PubMed  Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ Pollut 132(1):1–11

    CAS  PubMed  Google Scholar 

  • Nam JJ, Song BH, Eom KC, Lee SH, Smith A (2003) Distribution of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in South Korea. Chemosphere 50:1281–1289

    CAS  PubMed  Google Scholar 

  • Nicol GW, Glover LA, Prosser JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69:7420–7429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nisbet IC, LaGoy PK (1992) Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul Toxicol Pharmacol 16:290–300

    CAS  PubMed  Google Scholar 

  • Odjegba VJ, Atebe JO (2007) The effect of used engine oil on carbohydrate, mineral content and nitrate reductase activity of leafy vegetable (Amaranthus hybridus L.). J Appl Sci Environ Manag 11(2):191–196

    Google Scholar 

  • Odjegba VJ, Sadiq AO (2002) Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of Amaranthus hybridus L. Environmentalist 22:23–28

    Google Scholar 

  • Omar NYMJ, Abas MRB, Ketuly KA, Tahir NM (2002) Concentrations of PAHs in atmospheric particles (PM10) and roadside soil particles collected in Kuala Lumpur, Malaysia. Atmos Environ 36:247–254

    CAS  Google Scholar 

  • Osborne MR, Crosby NT (1987) Benzopyrenes, Cambridge, UK; Cambridge University Press

    Google Scholar 

  • Otten A, Alphenaar A, Pijls C, Spuij F, de Wit H (1997) In situ soil remediation. Kluwer, Boston, MA

    Google Scholar 

  • Polder MD, Hulzebos EM, Jager DT (1995) Validation of models on uptake of organic chemicals by plant roots. Environ Toxicol Chem 14(9):1615–1623

    CAS  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of polycyclic hydrocarbons in soil at MGP sites. J Soil Contam 7(4):467–480

    CAS  Google Scholar 

  • Radwan SS, Dashti N (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremediation 7(1):19–32

    CAS  PubMed  Google Scholar 

  • Ravindra K, Mittal AK, Van Grieken R (2001) Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review. Rev Environ Health 16:169–189

    CAS  PubMed  Google Scholar 

  • Reynolds CM, Wolf DC, Gentry TJ, Perry LB, Pidgeon CS, Koenen BA, Rogers HB, Beyrouty CA (1999) Plant enhancement of indigenous soil micro-organisms: a low-cost treatment of contaminated soils. Polar Rec 35:33–40

    Google Scholar 

  • Ribes S, Grimalt JO, Torres CJ, Cuevas E (2002) Temperature and organic matter dependence of the distribution of organochlorine compounds in mountain soils from the subtropical Atlantic (Teide, Tenerife island). Environ Sci Technol 36:1879–1885

    CAS  PubMed  Google Scholar 

  • Rivera-Espinoza Y, Dendooven L (2004) Dynamics of carbon, nitrogen and hydrocarbons in diesel-contaminated soil amended with biosolids and maize. Chemosphere 54(3):379–386

    CAS  PubMed  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA (1993) Sources of the fine organic aerosol 3. Road dust, tire debris, and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904

    CAS  Google Scholar 

  • Rosso PH, Pushnik JC, Lay M, Ustin SL (2005) Reflectance properties and physiological responses of Salicornia virginica to heavy metal and petroleum contamination. Environ Pollut 137:241–252

    CAS  PubMed  Google Scholar 

  • Salzer P, Corbiere H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus mosseae. Planta 208:319–325

    CAS  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):318–323

    Google Scholar 

  • Siewniak M (1975) Studies on air and soil pollution in the surroundings of petrochemical complex in Plock. Zeszyty Naukowe Szkoly Glownej Gospodarstwa Wiejskiego Akademii Rolniczej – Warszawa 53:1 (in Polish)

    Google Scholar 

  • Skrbic B, Miljevic N (2002) An evaluation of residues at an oil refinery site following fires. J Environ Sci Health A Tox Hazard Subst Environ Eng 37(6):1029–1039

    CAS  PubMed  Google Scholar 

  • Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525

    CAS  PubMed  Google Scholar 

  • Spriggs T, Banks MK, Schwab P (2005) Phytoremediation of Polycyclic Aromatic Hydrocarbons in Manufactured Gas Plant-Impacted Soil. J Environ Qual 34:1755–1762

    CAS  PubMed  Google Scholar 

  • Sutherland JB (1992) Detoxification of polycyclic aromatic hydrocarbons by fungi. J Ind Microbiol 9:53–62

    CAS  PubMed  Google Scholar 

  • Sverdrup LE, Hagen SB, Krogh PH, van Gestel CAM (2007) Benzo[a]pyrene shows low toxicity to three species of terrestrial plants, two soil invertebrates, and soil-nitrifying bacteria. Ecotoxicol Environ Saf 66:362–368

    CAS  PubMed  Google Scholar 

  • Tang L, Tang XY, Zhu YG, Zheng MH, Miao QL (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–828

    CAS  PubMed  Google Scholar 

  • Tebaay RH, Welp G, Brummer GW (1993) Gehalt an Polycyclischen Aromatischen Kohlenwasserstoffen (PAK) und deren Verteilungsmuster in unterschiedlivh belasteten Boden. Z Pflanzernernaehr, Bodenkd 156:1–10

    CAS  Google Scholar 

  • Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W, Li Z, Christie P (2010) Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytoremediation 12(5):516–533

    CAS  PubMed  Google Scholar 

  • Trapido M (1999) Polycyclic aromatic hydrocarbons in Estonian soil: contamination and profiles. Environ Pollut 105:67–74

    CAS  Google Scholar 

  • Tsao DT (2003) Advances in biochemical engineering/biotechnology Vol. 78, Phytoremediation. Springer, Berlin

    Google Scholar 

  • USEPA (1988) Second supplement to compendium of methods for the determination of toxic organic compounds in ambient air, atmospheric research and exposure assessment laboratory. Research Triangle Park, NC, EPA 600/4-89-018, pp 97

    Google Scholar 

  • USEPA (1996a) A citizen’s guide to natural attenuation – technology fact sheet. Office of Solid Waste and Emergency Response. EPA 542-F-96-015

    Google Scholar 

  • USEPA (1996b) A citizen’s guide to bioremediation – technology fact sheet. Office of Solid Waste and Emergency Response. EPA 542-F-96-007

    Google Scholar 

  • USEPA (1999) Integrated risk information system (IRIS). National Center for Environmental Assessment, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • USEPA (2002) Polycyclic organic matter. US Environmental Protection Agency. Available at http://www.epa.gov/ttn/atw/hlthef/polycycl.html

  • Varun M, D’Souza R, Kumar D, Paul MS (2011) Bioassay as monitoring system for lead phytoremediation through Crinum asiaticum L. Environ Monit Assess 178:373–381

    CAS  PubMed  Google Scholar 

  • Vivas A, Moreno B, del Val C, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    CAS  PubMed  Google Scholar 

  • Volkering F, Breure AM, Rulkens WH (1997) Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 8:401–417

    CAS  PubMed  Google Scholar 

  • Voutsa D, Terzi H, Muller L, Samara C, Kouimtzis T (2004) Profile analysis of organic micropollutants in the environment of a coal burning area, NW Greece. Chemosphere 55:595–604

    CAS  PubMed  Google Scholar 

  • Wadler S, Fuks JZ, Wiemik PH (1986) Phase I and II agents in cancer therapy: Part I. Anthracyclines and related compounds. J Clin Pharmacol 26:491–509

    CAS  PubMed  Google Scholar 

  • Wang XJ, Zheng Y, Liu RM, Li BG, Cao J, Tao S (2003) Medium scale spatial structures of Polycyclic Aromatic Hydrocarbons in the topsoil of Tianjin area. J Environ Sci Health B 38:327–335

    CAS  PubMed  Google Scholar 

  • Watkins JW, Sorensen DL, Sims RC (1994) Volatilization and mineralization of naphthalene in soil-grass microcosms. In: Anderson T, Coats JR (eds) Bioremediation through rhizosphere Technology, ACS Symposium Series 563. American Chemical Society, Washington, DC, pp 123–131

    Google Scholar 

  • Watts AW, Ballestero TP, Gardner KH (2006) Uptake of polycyclic aromatic hydrocarbons (PAHs) in salt marsh plants Spartina alterniflora grown in contaminated sediments. Chemosphere 62:1253–1260

    PubMed  Google Scholar 

  • Weiss P, Riss A, Gschmeidler E (1994) Investigation of heavy metal, PAH, PCB patterns and PCDD/F profiles of soil samples from an industrialized urban area with multivariate statistical methods. Chemosphere 29:2223–2236

    CAS  Google Scholar 

  • WHO/IPCS (1998) Environmental health criteria 202, selected non-heterocyclic PAHs. WHO, Geneva

    Google Scholar 

  • Widdowson M, Marr L, Novak J (2007) Mechanisms for phytoremediation of PAH compounds: a long-term field investigation. Geophys Res Abstr 9:10373

    Google Scholar 

  • Wieczorek JK, Wieczorek ZJ, Olszewski J, Badyga B, Smoczyñska K, Smoczyñski SS (2001) Effect of high anthracene concentration in the soil on its accumulation and growth of pea plants. Nat Sci 8:135–143

    Google Scholar 

  • Wilcke W, Muller S (1999) Polycyclic aromatic hydrocarbons in hydromorphic soils of the tropical metropolis Bangkok. Geoderma 91:297–309

    CAS  Google Scholar 

  • Wilcke W, Lillienfein J, do Carmo Lima S (1999) Contamination of highly weathered urban soils in Uberlandia, Brazil. J Plant Nutr Soil Sci 162:539–548

    CAS  Google Scholar 

  • Wild SR, Jones KC (1992) Polynuclear aromatic hydrocarbon uptake by carrots grown in sludge-amended soil. J Environ Qual 21:217–225

    CAS  Google Scholar 

  • Wild SR, Jones KC (1995) Polynuclear aromatic hydrocarbons in the UK environment: a preliminary source inventory and budget. Environ Pollut 88:91–108

    CAS  PubMed  Google Scholar 

  • Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173

    CAS  Google Scholar 

  • Windholz M (1983) The Merck index, 10th edn. Merck, Rahway, NJ

    Google Scholar 

  • Wong F, Harner T, Liu QT, Diamond ML (2004) Using experimental and forest soils to investigate the uptake of polycyclic aromatic hydrocarbons (PAHs) along an urban-rural gradient. Environ Pollut 129:387–398

    CAS  PubMed  Google Scholar 

  • Yang SYN, Connell DW, Hawker DW, Kayal SI (1991) Polycyclic aromatic hydrocarbons in air, soil, and vegetation in the vicinity of an urban roadway. Sci Total Environ 102:229–240

    CAS  Google Scholar 

  • Yang Y, Zhang XX, Korenaga T (2002) Distribution of polynuclear aromatic hydrocarbons (PAHs) in the soil of Tokushima, Japan. Water Air Soil Pollut 138:51–60

    CAS  Google Scholar 

  • Zengin FK, Munzuroglu O (2005) Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol Cracov Bot 47(2):157–164

    Google Scholar 

  • Zhang Z, Huang J, Yu G, Hong H (2004) Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ Pollut 130:349–361

    Google Scholar 

  • Zhang X, Cheng S, Zhu C, Sun S (2006) Microbial PAH-degradation in soil: degradation pathways and contributing factors. Pedosphere 16(5):5655–5665

    Google Scholar 

  • Zohair A, Salim AB, Soyibo AA, Beck AA (2006) Residues of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides in organically-farmed vegetables. Chemosphere 63:541–553

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohan D’Souza M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

D’Souza, R., Varun, M., Lakhani, A., Singla, V., Paul, M.S. (2015). PAH Contamination of Urban Soils and Phytoremediation. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_15

Download citation

Publish with us

Policies and ethics